Doors, Windows, Stairs \& Fireplaces
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Doors - Outdoor Entry

- $36^{\prime \prime}$ minimum entry

- Main/guest entrance open to social area
- Easy use lever handles
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Doors - Outdoor Entry

- Weather resistant surface
- Solid wood or foam centered
- Frame bolted lock
- Weather stripping
- Storm door
- Airlock/entry room/mud room

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Doors - Outdoor Entry

- Entry way - Porch

- At least 5' by 5'
- Well lit
- Side protected
- covered

Doors - Outdoor Entry

- Sidewalk
- Hard surface path \qquad from driveway to door \qquad
- Preferred flat = 1^{\prime} riser; 20^{\prime} run
- Steps = 6:12
- Minimum 4^{\prime} width

Doors - Outdoor Entry

- Closet should be located near outdoor entry door for coat storage. \qquad
- Small bench
- Boot storage
- Water resistant floor \qquad
\qquad
\qquad

Doors - Indoor Entry

- 32" minimum
- Block out light \& sound
- Privacy
- Hollowed or solid core
- Bigger entry = more spacious room \qquad feels

Doors - Door Types

- Flush Door
- Can be used for exterior.
- Smooth cover

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Doors - Door Types

- Panel Door
- Can be used for
exterior.
- Outside "paneled"

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Doors - Door Types

\qquad
\qquad

- Bifold
- Closets
- Door width 1^{\prime} or 2^{\prime}
- Installed in pairs

Doors - Door Types

- Sliding

- Large openings

Doors - Door Types

- Pocket
- Sliding door
- Rests in wall
- Kitchen, dining room
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Doors - Door Types

- Double action
- Swings 180°
- High traffic entries

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Doors - Door Types

- Accordion
- Large openings that bifold or sliding will not fit

Layouts arc courresy of Acchitecurce Recidenial Drawing and Desiegn

Doors - Door Types

- Dutch
- Upper \& lower half seperated
- Used to improve light \& ventilation
- Exterior door

Doors - Door Types

- French
- Panel door w/ glass panels
- Entrance to patio or terrace

Layouts are contresy of Acchitecture Residential Drawing and Design \qquad

Windows

- Admit light from outside
- Provide fresh air
- Create an
atmosphere inside by framing exterior view
- Improve aesthetics of exterior of house

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Windows - Lighting

- Glass area = 20\% floor area
- Better light face windows south \qquad
- 1 large window better contrast than several small windows

Windows - Lighting

- Better light placement = windows on multiple walls
- Higher window placement = more light penetration
- Window shape assist in light penetration

Windows - Ventilation

- Summer
- Window opening $=10 \%$ floor area
- Openings take advantage of prevailing winds
- Locate windows to assist in air movement in room
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Windows - I mprove View

- Large area of fixed glass best
- Divisions small
- Sill height determined
- Furniture
- Room arrangement
- view

\qquad
\qquad

Windows Types

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Windows Types

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Windows Types

- Picture
- Circle top
- Special shape

Windows Types

Halls

- 6-8\% of total square footage
- 36"-48" wide
- Storage areas built in to hallway
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Stairs

- Must follow local building codes
- Stair types
- Straight
- L shaped
- Double L

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Stairs

- Stair types
- U stairs
- Winding
- Spiral

Stairs

- Stair types
- U stairs
- Winding
- Spiral

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Stairs -Design Determination

- Determine opening by ceiling height
- Calculate rise and run
- Uniform rise height and tread width
- Minimum tread width = 11"
- Riser slope > 60°

Stairs -Design

 Determination- Stairway headroom > 6'-6"
- $30^{\circ}<$ stair slope $<35^{\circ}$
- $1^{\prime \prime}<$ nosing $<1.5^{\prime \prime}$

Stairs -Design

Determination

- Treads
- Not tapered
- High friction
- Contrasting color to rise
- Accommodate $12^{\prime} 4^{\prime \prime}$ on house plan for stairs and landing
- Rise increases, lower tread width
- Doors should not open towards stairs
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Stairs -Design Determination

- Lighting

- As much as rest of house
- Light switch located at top and bottom of stairs -3 way switch

Stairs -Designing

- $30^{\circ}<$ stair slope $<35^{\circ}$
- 2 risers +1 tread $=25$ in
- Riser height * tread width $=75$
- 1 riser +1 tread = 17-18
- 1 more riser than tread

Stairs - Examples

- Design a straight stairway for a house with a basement. Distance between the floor and basement ceiling is $8^{\prime}-0^{\prime \prime}$. The ceiling is made of drywall. The \qquad floor joists are $2 \times 10^{\prime} \mathrm{s}\left(1.5^{\prime \prime} \times 9.25^{\prime \prime}\right)$

Stair's - Examples

- What is the total rise of the stairs?
- Have to go from finished floor to finished floor \qquad
- Floor to ceiling
$8^{\prime}-0^{\prime \prime}$
- Ceiling - drywall
$0^{\prime}-0.5^{\prime \prime}$
- Joists (2" x $10^{\prime \prime}$)
$0^{\prime}-9.25^{\prime \prime}$
- Subfloor - $1 / 2^{\prime \prime}$ plywood
$0^{\prime}-0.5^{\prime \prime}$
- Finished floor
$0^{\prime}-1{ }^{\prime \prime}$
- Total $\quad \overline{8^{\prime}-11.25^{\prime \prime}}$ or $107.25^{\prime \prime}$

Stairs - Examples

- Calculate the number of risers
$-107.25^{\prime \prime} / 7=15.32$ risers
$-107.25^{\prime \prime} / 15=7.15^{\prime \prime}$

15 Risers
Each riser will be 7.15"

Stairs - Examples

- Determine correct tread size
- Stair slope between 30 and 35 degrees \qquad
- Trial and error procedure
- Example: 1 riser +1 tread $\approx 17-18^{\prime \prime}$, \qquad guess a size of $18^{\prime \prime}-10.5=7.5^{\prime \prime}$, then $\operatorname{Tan} \Theta=7.5 / 10.5$ \qquad
$\Theta=\operatorname{Tan}^{-1}(0.714)=35.5^{\circ}$ too large!
- try rise $=7.25^{\prime \prime}, \Theta=\operatorname{Tan}^{-1}(7.25 / 10.5)=$
\qquad 34.6° OK. (Previous example used $7.15^{\prime \prime}$)

Stairs - Examples

- Determine correct tread size
- Sum of 2 risers \& 1 tread $\approx 25^{\prime \prime}$
$7.25^{\prime \prime} * 2+10.5=25^{\prime \prime}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Stairs - Examples

- Determine correct tread size
- Riser height * tread width ≈ 75 \qquad
7.25 * $10.5=76.125$ A bit too large...

So..adjust riser down slightly to 7.15"
Last check is still ok : 7.15*2+10.5=24.8"

Stairs - Examples

- Determine correct tread size
- Riser height + tread width = 17-18" \qquad
$7.15+10.5=17.65^{\prime \prime}$
\qquad
\qquad
\qquad
\qquad

Stairs - Examples

- Determine total run
\# treads * tread width
14 * $10.5=147^{\prime \prime}\left(12^{\prime}-3^{\prime \prime}\right)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Stairs - Examples

- Draw the stairs - To Scale
- Draw 2 lines total height apart
- Draw \# lines = \# treads
- Add in vertical lines for \# risers
- Darken in treads \& risers

Stairs - Examples

- Draw 2 lines total height apart

Stairs - Examples
. Draw \# lines = \# treads (spanning total run)

Stairs - Examples

- Add in vertical lines for \# risers

\qquad

Stairs - Examples

- Darken in treads \& risers

Layouts are courres of Acchitececurce Recidential Drwing and Design

Stairs - Examples

- Dimension!

Stairs - Examples

- Add in minimum height of $6^{\prime \prime}-6^{\prime \prime}$
- Place handrail $30^{\prime \prime}$ above stairs
- DIMENSION!

Fireplaces

- Older fireplaces were nice but really inefficient \qquad
- Lose more heat than produce
- Improve efficiency with double wall

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fireplaces

- Design
- Opening should be 10-12 times more than flue area
- Width should always be bigger than height

Fireplaces - example

- Flue dimensions $12^{\prime \prime}$ by $12^{\prime \prime}$
- Flue area = 144 in 2
- Opening 10x flue area $=1440 \mathrm{in}^{2}$
- Width $=45$ in
- Height $=1440 / 45=32$ in \qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fireplaces

- Damper placement
- Regulate flow of air
- Stops down draft
- Larger than the area of flue lining
- Long as the width of the fireplace

Backdraft Dampers

Fireplaces

- Flue

- At least 4" of brick on each side
- No liner - min of $8^{\prime \prime}$ each side
- Height $\min =14^{\prime}$
-2^{\prime} higher than highest point on roof

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Test Wednesday

- Square Footage to Foundations.
- Test has
- Short answer
- Multiple choice
- Calculations
- Bring calculator, straight edge and high-liter

