Reynolds Transport Theorem  (continued)

                    

 

         DB/dt |sys =  /∂t  ρb dV  +  ρb V . n dS       (1)

                                    cv              cs

 

     

        Then Reynolds transport theorem

 

 

 

Suppose  B  is mass.  Then for conservation of mass    DB/dt|sys  =  0   and  (1) becomes

 

                             ∂/∂t  ρ dV  +  ∫ ρ V . n dS     =  0 

                                   cv            cs

 

In words, the mass stored in the control volume plus the mass flux across the control surface

must add up to zero for conservation of mass.   Click here for discussion of conservation of mass.

 

Suppose  B  is linear momentum.  Then for conservation of linear momentum    DB/dt|sys  =  Σ F  

and  (1) becomes

 

                             ∂/∂t  Vρ dV  +  V ρ V . n dS     =  Σ F 

                                   cv                cs

 

In words, the linear momentum stored in the control volume plus the flux of linear momentum

crossing the control surface must sum to the external forces acting on the fluid within the

control volume and upon the control surface.  Click here for discussion of conservation of

linear momentum.

 

Suppose  B  is energy, E.  Then for conservation of energy DB/dt|sys  =  dQ/dt net in + dW/dtshaft net in

and  (1) becomes

 

                             ∂/∂t  e ρ dV  +  e ρ V . n dS    =    dQ/dt net in + dW/dtshaft net in

                                   cv                cs

 

In words, the energy stored in the control volume plus the flux of energy crossing the control

surface must sum to the net rate of heat transfer into the control surface plus the net rate of

work into the control surface.  Click here for discussion of conservation of energy.

 


Return to Notes on Fluid Mechanics


Copyright © 2019 Richard C. Coddington
All rights reserved.