Shearing stress relationships

 

 

Key Concepts:  In a viscous fluid shearing stresses will act on each face of a differential element.

The shearing stress relationships may be expressed in differential form.  Each component of

shearing stress depends on the dynamic viscosity, μ, of the fluid.

 

 

In a Nut Shell:  For a viscous fluid each face of a fluid element will sustain a shearing stress.  The table below lists the shearing stress on each face.

 

 

Shearing Stress Relationships

 

                 τxy  =    τyx   =  μ(∂u/∂y + ∂v/∂x)

 

                 τyz  =    τzy   =  μ(∂u/∂z + ∂w/∂y)

 

                 τzx  =    τxz   =  μ(∂w/∂x + ∂u/∂z)

 

where   τxy  =    τyx   are the shearing stresses on the x and y-faces of the element

 

            τyz  =    τzy   are the shearing stresses on the y and z-faces of the element

 

            τzx  =    τxz   are the shearing stresses on the z and x-faces of the element

 

            u, v, w  are the components of fluid velocity in the x, y, and z directions

 

                    μ    is the dynamic viscosity of the fluid

 

      (∂/∂x ,  ∂/∂y  ,  and   ∂/∂z   are the partial derivatives in the x, y, and z - directions

 

 

Click here to return to discussion of the Navier-Stokes equations.

 

                   

 


Return to Notes on Fluid Mechanics


Copyright © 2019 Richard C. Coddington
All rights reserved.