Strategy in the Analysis of Fluid Mechanics using Control Volumes

 

 

Key Concept:  The basic strategy is to use Reynolds Transport Theorem to obtain expressions

for the conservation of mass, momentum, and energy for a control volume.   Mass, momentum,

and energy cross the control surface and may be stored within the control volume.

 

 

In a Nutshell:  In the Eulerian point of view, click here for a review if needed,  you observe fluid flow across portions of a control surface, cs, within which is the control volume, cv, (a finite volume).   Let  b  denote an intensive property.  The ones of interest in fluid mechanics are:  mass per unit mass where  b = 1, linear momentum per unit mass which is fluid velocity, where  b = V, angular momentum per unit mass where b =  r x V, and energy per unit mass, where b = e.  Energy per unit mass, e, includes contributions from kinetic energy,  V2/2,  potential energy,  gz,  and internal energy,  u .

       

The strategy described in this section is specific to conservation of mass but the same basic elements apply to conservation of linear momentum, conservation of angular momentum, and conservation of energy.  For conservation of mass:  b = 1,    cv = control volume,    cs  =  control surface

 

 

              ∂/∂t  ρb dV  +  ρb V . n dS    =  0

                    cv              cs

 

 

The first term above represents the accumulation of the intensive property within the control

volume and the second term represents the flux of the intensive property across the control surface.

 

Here        

            b       =   the intensive property

            ρ       =   the mass density of the fluid

        ∂/∂t      =    the time rate of change 

         dV      =    the element of volume within the control volume

         V        =   the fluid velocity crossing the control surface

         n         =    the unit outward normal to the control surface

     V . n      =    the normal component of velocity crossing the control surface (dot product)

       dS         =     the element of area on the control surface

 

Click here for a table detailing the steps for analysis using control volumes.

 



Return to Notes on Fluid Mechanics


Copyright © 2019 Richard C. Coddington
All rights reserved.