Rapidly Varying Flow - Hydraulic Jumps   (continued)

 

                                   

Conservation of Energy:      P1  +  V12/2g  +  z1  =   P2  +  V22/2g  +  z2  +  hL

 

Now  z1  =   z2  =  0   and    P1  =  γ y1 ,  P2  =  γ y2   So the energy equation becomes

 

                      y1  +  V12/2g   =   y2  +  V22/2g   +  hL

 

Or in terms of specific energy:             E1  =  E2  + hL

 

So the flow leaving the hydraulic jump has a lower specific energy than that entering.

 

The head loss across a hydraulic jump is then    hL  =  E1  -  E2  =  y1 + V12/2g  - y2 - V22/2g  

 

Again from conservation of mass:   y1V1 = y2V2              So      V2   =  y1V1/y2

 

    hL  =  y1 + V12/2g  - y2 – (y1V1/y22)/2g   =  V12/2g  [ 1 – (y1/y2)2] + y1 – y2

 

Recall   Fr = V/√gy   So for the entering flow  Fr1 = V1/√gy1   ,  V12 = (Fr1)2 gy1

 

 

      hL / y1   =   Fr12/2  [ 1 – (y1/y2)2] + [1– (y2/ y1)]     (expression for head loss across jump)

 

 

Click here for examples.

 

Return to Notes on Fluid Mechanics


Copyright © 2019 Richard C. Coddington
All rights reserved.