Sample Examples  ˗ Modified Format ˗Fluid Mechanics Problems

 

Example 1:  A shaft of diameter, d, is pulled through a cylindrical bearing as shown below.

A lubricant with dynamic viscosity, μ, fills the gap of width, b, between the shaft and the bearing. 

The force P pulls the shaft at a constant speed, Vo.  Assume the velocity distribution in the gap

is given by   v(y) = Vo( 1 ˗ y/b) where y is the coordinate directed from the shaft to the bearing.

Find an expression for the shearing stress, τ, in the fluid in terms of  Vo, μ, and b.


                                       

a.  τ = μVo/b    b.  τ = 2μVo/b    c.  τ = ˗ μVo/b    d.  .  τ = ˗ 2μVo/b    e.  None of these

 

Example 2:   In a steady, two-dimensional flow field the fluid density varies linearly with respect

to the coordinate, x.  i.e.  ρ  = Ax  where A  is a constant.  If the x component of velocity, u, is

given by  u  =  y, find an expression for the y component, v.

 

a.  v  =  - y2 / 2x  +  f(x)    b.  v  =  y2 / 2x  +  f(x)    c.  v  =  - y2 / x  +  f(x)                 

d.  v  =   y2 / 2x  +  f(x)     e.  None of these.

 

 

Example 3:  The velocity components in a two-dimensional flow field are  u = ˗ 4 m/sec and

v = ˗ 2 m/sec.  Find an expression for the stream function, ψ.

 

a.  ψ  =  2x + 4y + C    b.  ψ  =  2x  ˗ 4y + C   c.  ψ  =  4x  +  4y  + C    d.  4x  ˗  4y  +  C

 

Example 4:  The following form for Bernoulli's equation, 

 

                                 P / ρ + ½ V2 +  g z  =  Constant along streamline

Holds for the following conditions:

 

a.  Inviscid, steady flow, compressible or incompressible along a streamline

b.  Inviscid, steady flow, incmpressible flow along a streamline

c.  Inviscid, steady flow, irrotational flow, compressible or incompressible

d.  Inviscid, steady, incompressible, irrotational flow

e.  All of these

 

 


Return to Table of Engineering Notes

 

Click here to return to ABE Home Page


Copyright @ 2017 Richard C. Coddington
All rights reserved.