Laminar Flow/Navier-Stokes Equations

 

θ ˗component of the Navier-Stokes Equation

          1               2                      3                   4                5                           6                    7
ρ ( ∂ vθ /∂t + vr, vθ /∂r + vθ/r vθ /∂θ + vr vθ /r + vz  vθ /∂z )  =  ˗ (1/r) ∂ P /∂ θ + ρ gθ +

 

                8                           9                      10                        11                    12

μ [ (1/r) ∂/∂r (r ∂ vθ /∂r) ˗ vθ /r2 + (1/r2) (∂2vθ /∂θ2) + (2/r2) ∂ vr /∂θ + (∂2vθ /∂z2 ]

 

 

 Terms that are zero from simplifications/assumptions include:

 

Terms:    1 thru 5 on the left hand side and  6, 7, 11, and 12  on the right had side

 

The remaining terms are as follows:         0  =  μ [ (1/r) ∂/∂r (r ∂ vθ /∂r) ˗ vθ /r2

 

Since   vθ  =  vθ (r)  this partial differential equation becomes an ordinary differential equation

 

As follows:                     d/dr (r d vθ /dr) ˗ vθ /r   =  0

 

      

Take derivatives:                    d vθ /dr  + r d2vθ /dr2 ˗ vθ /r   =  0

 

Rearrangement gives         rd2vθ /dr2 +  d vθ /dr  ˗ vθ /r   =  0    (Second order d.e.

                                                                                                 with variable coefficients)

 

 

This type of D.E. lends itself to a power law type of solution.  i.e.    CrP 

 

1.  Try the solution    v1θ  =  C1 r     Check to see that it satisfies the d.e.

 

         0  +  C1 ˗ C1  =  0  So  v1θ =  C1 r       is one solution to the d.e.

 

2.   Use the "method of reduction" to find a second solution of the differential equation.

 

Click here to continue with the solution.

 


Return to Notes on Fluid Mechanics


Copyright © 2019 Richard C. Coddington
All rights reserved.