The Parallel Axis Theorem  (example continued)

 

 

 (Strategy continued)


Calculate the centroid of the composite section,  ycg  :

                    Σ Ai ycg  =  ΣAiyi     (3bh) ycg  =  (bh)(h/2) + (bh)(h/2) + (bh)(h + b/2)

 

                            ycg  =  c  =  [h + h + (h+b/2)] / 3  =  (5h + b)/6

 

 

Locate the distances of the centroid of the three rectangular areas from the centroid of

the composite section.  i.e.  d and e

                                       

 

 

Calculate the moment of inertia of each rectangular area about its own centroidal axis.

 

      Moment of inertias:           Izz1 =   Izz2  =  (1/12)bh3        Izz3  =  (1/12) hb3  

 

 

Use the parallel axis theorem to obtain the moment of inertia of the composite section

about its centroidal axis.

 

               Izzcg1  =  Izz1  + (bh)d2  =  Izzcg2      and       Izzcg3  =  Izz3  + (bh)e2 

 

 

Sum these terms to obtain the total moment of inertia, Izzcg, for the composite area about

its centroid.

                                    Izzcg  =  Izzcg1  +  Izzcg2  +  Izzcg3 

 

 

Click here to continue.

 

 

 


Return to Notes on Solid Mechanics

Copyright © 2019 Richard C. Coddington
All rights reserved.