Shear Stress

 

Example:  (continued)

                                   

 

ΣMC = 0:   (R cosβ)c(cosθ) – (R sinβ)c(sinθ) – (P cosα)d(sinθ) – (P sinα)d( cosθ)  =  0

 

Solve for R.         R  =  P (d/c) [ (cosα sinθ +  sinα cosθ) / (cosβ cosθ –  sinβ sinθ ) ]

 

Use trig identities.    R  =  P (d/c) [ sin(α+θ) / cos(β+θ) ]

 

  ΣFx = 0:   – R sinβ – Cx  +  P cosα  =  0

 

  ΣFy = 0:    – R cosβ +  Cy  –  P sinα  =  0

 

Solve for Cx and Cy.       

 

     Cx  =   P cosα   –  R sinβ  ,     P cosα   –  P (d/c) [ sin(α+θ) / cos(β+θ) ] sinβ  

 

    Cy  =   P sinα   +  R cosβ  ,      P sinα   +  P (d/c) [ sin(α+θ) / cos(β+θ) ] cosβ  

 

Note:  Both  Cx and Cy check dimensionally.

 

The resultant force on the pin is   √ ( Cx2 +  Cy2 )

 

The cross sectional area of the pin is:  π e2 / 4   =  0.196 in2

 

So the average shear stress in the pin, S,  is   S  =  4 √ ( Cx2 +  Cy2 ) / π e2

 

For the given data:  Cx = -125.6 lb         Cy  =  1502.8 lb     S  =  1508 lb

 

                 S  =  7681 psi  =  7.7 ksi      (result)

 

Note:  With the symbolic expressions “what if” testing can show how the result for

            average shear stress depends on the variables such as c and d  or  others.

 


Return to Notes on Solid Mechanics

Copyright © 2019 Richard C. Coddington
All rights reserved.