Stress Concentration

 

Example:  A flat plate with a cross-section of  h =3 in by  w = 0.5 in is subjected to a centric

load  P  as shown in the figure below.  The plate has two holes drilled into it at locations A and B.

The diameter of the hole at A is dA = 0.5 in.  The diameter of the hole at B is dB = 1.5 in.

Suppose the allowable stress is     σall  =  16 ksi .  Find the maximum value for P.

                     

 

 

Strategy:  Calculate the nominal stress in the plate then find the stress concentration factors

at the locations of each hole.  The stress concentration factor,  K,  depends on the ratio of the

diameter of the hole to the width of the plate.  Then apply   K  =  σmax / σave   where σave  is

the nominal stress over the narrowest section of the plate of area  td. 

In this example  σmax  =  16 ksi.

 

Note:  (1/2)d + dhole +  (1/2)d  =  h    So  at  A,  d + dA = h,  d  =  h ˗ dA  =  3 ˗ 0.5  =  2.5 in

 

Likewise at B:  d = h ˗ dB  =  3 ˗ 1.5  =  1/5 in

 

The nominal tensile stress in the plate is   P/A  =  P/(3/2)  =  (2/3)P  ksi

 

From the chart for plates with holes drilled in them:

 

At  A   2r/D  =  (1/2)/3  =  1/6         At  B  2r/D  =  (3/2)/3  =  ½

 

So at   A     K  =  KA  =  2.6       and  at  B     K  =  KB   =  2.18

 

Also from the area of the narrowest section at A is  td = (1/2 in)(5/2in) = 5/4 in2

 

So  at A         2.6  =  16/[(4/5)P]                      the result is       P  =  7.7 ksi

 

Also from the area of the narrowest section at B is  td = (1/2 in)(3/2in) = 3/4 in2

 

So at B       2.18  =  16/[(4/3)P]                       the result is        P  =  5.5 ksi

 

The allowable loading then must be the lesser of the two values for P which is  5.5 ksi.

 

Note:  The stress concentration at the smaller hole is higher.

 

Click here for another example.

 


Return to Notes on Solid Mechanics


Copyright © 2019 Richard C. Coddington
All rights reserved.