Limits for a function with two independent variables

 

 

In a Nut Shell:  Suppose f(x,y) approaches the value of  L  as (x,y) approaches the value of

(a,b).  Then the limit means that the distance between  f(x,y) and L can be made arbitrarily

small by making the distance between (x,y) and (a,b) sufficiently small (but not zero).

 

 

 

The formal definition of the limit: 

 

                       lim         f(x,y) =  L

                (x,y) →(a,b)

 

If for every number  ε  > 0  there is a corresponding number  δ  >  0  such that

if  (x,y) ϵ D  and  0  <  √[ (x ˗ a)2  +  (y ˗b)2 ]  <  δ  then  | f(x,y) ˗ L   <   ε .

 

 

Strategy for finding limits:

 

It's easiest for cases where the limit does not exist.   So first attempt to show that the limit

does not exist.  In this case, the strategy is to approach the limit of the function from

different directions.  If any two directions yield a different limit, then the limit of the

function does not exist.

 

If you try several directions and each yields the same limit, then perhaps the limit does

exist.  This type is much more difficult.  Strategies to show the limit exists and find the

value of the limit in this case include:

 

a.  If the function is a polynomial or a rational function then use continuity to find

     its limit.

b.  Use the squeeze theorem to determine the limit.

c.  Use the formal definition of the limit directly.   (as given above)

 

 

Squeeze Theorem for functions with two independent variables:

 

If   f(x,y)    g(x,y)    h(x,y)  when  (x,y) is near  (a,b)  except possibly at  (a,b)  and

 

                lim    f(x,y)     =          lim  h(x,y)   =     L

        (x,y) → (a,b)              (x,y) → (a,b)

 

then           lim  g(x,y)  =  L

          (x,y) → (a,b)

 

 

 

             

Click here for examples.

 




Copyright © 2017 Richard C. Coddington

All rights reserved.