Runge-Kutta Method for Approximate Solution of First Order Differential Equations

 

 

In a Nut Shell:  The Runge-Kutta Method is a "fourth order" method and provides

greater accuracy than Picard's or Euler's Methods although it involves more extensive

calculations.

 

 

Problem Statement:    Find an approximate solution to the first order, ordinary d.e.

 

           dy/dx   =  f [ (x,y(x) ]     subject to the condition        y(0)  =  yo      in [a,b]

 

 

Strategy:    Use the Runge-Kutta Algorithm as given below

 

                          yn+1  =  yn  +  h k          n   0

 

where  h  =  step size

 

             k  =  (1/6) [ k1  +  2k2  +  2k3  +  k4 ]

 

and      k1  =  f(xn, yn) ,         k2  =  f( xn + h/2 , yn + hk1 / 2 )

 

            k3  =  f( xn + h/2 , yn + hk2 / 2 ) ,   k4  =  f( xn+1 ,  yn + hk3 )

 

 

 

 Example:  Use the Runge-Kutta Method to find an approximate solution to

 

   dy/dx  =  2 y ,   y(0) = 1/2    at  x = 0.5    using step size, h = 0.25

 

The exact solution is   y(x)  =  (1/2) e2x   .

 

Compare the approximate solution with the exact solution at  x = 0.5.

 

 

Click here to continue with this example.

 

Click here to return to the discussion of approximate  methods for d.e.'s.

 

 

 




Copyright © 2017 Richard C. Coddington

All rights reserved.