Alternating Series and Conditional Convergence

 

 

In a Nut Shell:  An alternating series is one in which every other term in the series

changes sign.  The typical form is as follows:

                                                                          

                    ∑(-1)n+1 an         or        ∑(-1)n an  

                n = 1                               n = 0                                

 

There are several tests that apply to alternating series.  The basic one is called the

alternating series test as follows:

 

If the alternating series,    ∑(-1)n+1 an   satisfies the two conditions:

 

an     an+1    > 0  for all n 

 

     lim  an   = 0 

   n → ∞

 

 

Then the alternating series converges.   Else, this test does not apply.

 

 

 

Theorem:  If the alternating series is absolutely convergent, then it is convergent.

 

 

Three other tests apply to both alternating series and to positive term series.  As given below.

 

nth term test  -  If  lim an ≠ 0 or does not exist, series diverges .   

                           n → ∞

 

If      lim an =  0  , then there is no conclusion.  The series may converge or diverge. 

            n → ∞

 

Ratio Test  -  If  P= lim   | (an+1)/ an |  exists or is infinite the series

                               n → ∞

    ∑ an  converges absolutely if P < 1, diverges if P > 1.  

 

         If   P = 1 this  test fails.

 

Root Test   Suppose  P =   lim  |an| 1/n exists or is infinite, then

                                           n → ∞

      the series   ∑ an  

 

a.       Converges absolutely if  P < 1

b.      Diverges if  P > 1

c.       Test fails if P = 1

 

Click here to continue with a discussion of conditional convergence.

 

 

 




Copyright © 2019 Richard C. Coddington

All rights reserved.