Calculus 3  Final Exam    -   Math 241   Fall, 2006

 

 

 

1.

 

 

Find an equation for the plane if the plane contains the line

 

 (x – 1)/0   =  (y – 1)/1   =  (z – 1)/-1    and the plane is parallel to the line

                                                          x  =  11  + t,   y  =  -3  + 2t,    z  =  17  - 2t

Hint:  Find normal to plane by cross product of vectors parallel to each line.

Answer:  -y  +  2  -z  =  0

 

 

2.

Suppose that  w  = z(u,v),  where  u  = xy  and  v =  x + y.  Use the chain rule to

express the partial derivative     2z/∂x∂y    in terms of derivatives of z  with respect

to  u  and  v .  Hint:  z is dependent variable, u and v intermediate variables, with

x and y being the independent variables.

Answer:    2z/∂x∂y    =  ∂z/∂u  + u∂2z/∂u2    +v∂2z/∂u∂v    + ∂2z/∂v2    

 

 

3.

 

Find the tangential and normal components of acceleration for the following path:

          r(t)  =  t i  +  t2 j  +  t3 k     Hint:  aT  =  a  .  T   aN  =  √( a2  - aT2 )

 Answer:  aT  =  (4t  +  18t3) / √(1  +  4t2  +  9t4)

Answer:  aN  =  2{√[(1  +  9t2  +  9t4) / (1  +  4t2  +  9t4)]}

 

 

 

4.

 

a.  Let  f(x,y)  =  sin(x2 + y2)  and   u  = ij.  Find the directional derivative of f(x,y)

     in the direction of the vector,  u .     Hint:  df/du  =  grad f  .  u   

 Answer:   df/du  =  2(x  -  y) cos(x2 + y2) 

 b.  Find   zx  and  zy  for the function   z  = z(x,y)  given implicitly as

 

                 3z5x  +  12 xz  +  cos(z + y)  +  3  =  0

 

Answer:  ∂z/∂x  =  -[(3z5  +  12z) / (15z4x  +  12x  -  sin (z  +  y)]

Answer:  ∂z/∂y  =    [sin (z  +  y) / (15z4x  +  12x  -  sin (z  +  y)]

 

 

5.

You are sending a gift packed in a rectangular box with length  x,  width  y, and depth, z.

The shipping service requires that the sum of the length, width, and depth at most can be

108 inches.  What are the dimensions of the largest box (largest volume) you can send?

 

    Constraint:                   x  +  y  +  z    108   Hint:  Use Lagrange multiplier approach.

 Answer:  x  =  y  =  z  =  36  inches 

 

 

 

6.

 Sketch the region of integration and evaluate the double integral

 

                      (x + 2y2) dA

                     D

where D is the region in the first quadrant bounded by  y = x,   y = 3x,   and  x = 1.

 Hint:   dA  =  dy dx     and find limits of integration.  Answer:  Value of integral  =  5

 

Click here to continue with this exam.