Basics of Second Order, Ordinary Differential Equations                                  

 

 

In a Nut Shell:   A differential equation,  y ’’ + p(x)y ’ + q(x)y =  0  is of the second

order since the second derivative of the dependent variable, y, appears in the d.e.   This

d.e. appears frequently in mechanical systems.  (i.e. vibration applications)

 

 

 

 

 

The principle of superposition applies to second order, linear, ordinary d.e.’s.

 

 

The sum of any two linearly independent solutions,   y1 and y2   of the differential equation

 

    y ’’ + p(x)y ’ + q(x)y = 0 

 

   y  =   c1 y1  +  c2 y2   is again a solution of the differential equation

                                  where c1  and   c2  are constants.

 

  y1 and y2   are linearly independent.  

 

 

 

 

 

Note:  The two functions,  y1 and y2 ,  must be linearly independent.

 

Two functions ,  y1 and y2 ,  are linearly independent provided that neither is a

constant multiple of the other.  The Wronskian, WR,  is nonzero if the functions y1

and y2  are linearly independent.  (below   det  means a 2 by 2 determinant)

 

                                           y1               y2                                                                                           

     WR   =           det                                            0

                                     d y1 /dx      d y2 /dx

 

 

 

             

NOTE:   A second order d.e. requires two initial conditions in order to evaluate the

two constants of integration when integrating the d.e.

                                                                 

                                         y ’’ + p(x) y ’ + q(x) y  =  0       

 

The initial conditions may appear as   y(a)  =  c,    y ’(a)  =  d,     where  c and d are constants

 

 

Click here to continue with discussion of the basics of second order, linear, ordinary  d.e.’s.

 




Copyright © 2017 Richard C. Coddington

All rights reserved.