Change of Variables in Integrals  (continued)

 

 

As mentioned the challenging part in changing variables from (x,y) to (u,v) is to find the

transformation x = x(u,v)  and  y = y(u,v)  from the region  R in the xy-plane to  region  S in

the uv-plane.  Then use this information to calculate the Jacobian transformation,  JT(u,v).

 

 

i.e.      Use the Jacobian, JT(u,v), to rewrite the transformed integral as follows:

 

 

                          I  =       F(x,y) dA    =        G(u,v)  | JT(u,v) | du dv

                                  R                                S

 

 

The table below details one strategy to find the Jacobian transformation from parallelogram

regions, R, in the xy-plane to rectangular regions, S, in the uv-plane.

 

 

Step 1

 

Graph the region, R, defined by:

 y ˗  f1(x) = C1,  y ˗ f1(x) = C2 ,   by  y ˗ f2(x) = D1,   y ˗  f2(x) = D2  . 

 

 

Step 2

 

Determine the coordinates of the vertices for each corner of the region

in R and the equations describing each "side" of region R.

 

 

Step 3

 

Find the new variables, u and v, by setting  u = y ˗ f1(x)  and  v  =  y ˗ f2(x)

where  C1  u  ≤ C2  and  D1    v    D2.

 

 

Step 4

 

The coordinates of the vertices for each corner of the region in S are

(C1 ,  D1),  (C1 , D2),  (C2 , D1),  and  (C2 , D2) .  Plot the rectangle, S.

 

 

Step 5

 

The limits of integration in the u-v plane are  C1  u  ≤ C2  and  D1    v    D2 .

 

 

Step 6

 

Calculate the Jacobian, JT(u,v) by taking the partial derivatives

∂x/∂u,   ∂x/∂v,   ∂y/∂u,  and   ∂y/∂v  .

 

 

 

Step 7

 

Use the Jacobian to evaluate the integral, I,

 

                                            D2   C2

    I  =       F(x,y) dA    =            G(u,v)  | JT(u,v) | du dv

             R                           D1   C1

                                               S

 

 

Click here for an example.

 




Copyright © 2017 Richard C. Coddington

All rights reserved.