Conservative Vector Fields     

 

 

In a Nut Shell:  A vector field may be conservative or non-conservative.  If the curl of the

vector field is zero, then the vector field is conservative.

 

A conservative vector field is said to be irrotational. 

A common application appears in the area of fluid mechanics.

 

 

A vector field, F, can be defined by a vector valued function at each point (x,y) in a plane or
by each point (x,y,z) in space such as

 

                                        F(x, y)    =    P(x,y) i    +  Q(x,y) j     

 

                                        F(x, y, z)  =  P(x,y,z) i   +  Q(x,y,z) j   +   R(x,y,z) k     

 

 where  P(x,y), Q(x,y), and R(x,y) are scalar fields    (scalar functions)

 where  P(x,y,z), Q(x,y,z), and R(x,yz) are scalar fields       (scalar functions)

 

 

Strategy to test for Conservative Vector Fields:  Calculate the curl of the vector field to

determine if it is conservative or not.  If the curl of the vector field is zero, then the vector

field is conservative and there exists a scalar function, a potential function, such that the

gradient of the scalar function equals the vector function.

 

 

Test for a two-dimensional vector field,        F(x,y):    curl ( F(x,y) ) = 0

 

Test for a three-dimensional vector field,   F(x,y,z):    curl ( F(x,y,z) ) = 0

 

 

For conservative vector fields there exists a scalar function such that the

vector function equals the gradient of the scalar function.

 

                                   F(x,y)     =    grad ( f(x,y) )       (two-dimensional case)

 

                                   F(x,y,z)  =    grad ( f(x,y,z) )    (three-dimensional case)

 

 

 

Click here for examples.

 

 

 




Copyright © 2017 Richard C. Coddington

All rights reserved.