Divergence Theorem  (Gauss's Theorem) (continued)

 

 

In a Nut Shell:  The Divergence Theorem extends the divergence form of Green’s

theorem from two to three dimensions. 

 

In this case the line integral around a closed curve, C,  is replaced by a surface integral

around a closed surface, S, and the area integral involving  the divergence of  the vector

field  F  is replaced by the volume integral of the divergence of the vector field,  F .

 

 

 

 

 

So we go from

                               F  .  n  ds   =       div F dA       

                               C                        R

 

 

 

Green's Theorem

 

to

                 F(x,y,z)  .  n  dS   =         div F(x,y,z)  dV

               S                                       E

 

 

 

Divergence Theorem

 

Here        F  =  P(x,y,z) i   +  Q(x,y,z) j  +  R(x,y,z) k                                                       

 

                n   =  unit normal to the closed surface  S

                                                                                                                                       

              dS  =  element of area on surface S

 

           div F  =  ∂P/∂x  +  ∂Q/∂y   +  ∂R/∂z 

 

               dV =  element of volume for the solid region E

 

                E  =  volume of solid region

 

 

 

                                                       

 

 

Click here for alternate strategies in applying the Divergence Theorem.                

 




Copyright © 2017 Richard C. Coddington

All rights reserved.