NAME:

Math 285 — Midterm 3 practice

Total points: **100**. Please explain all answers. Calculators, computers, books and notes are **not** allowed. Suggestion: even if you cannot complete a problem, write out the part of the solution you know. You can get partial credit for it.

1. [25 points] Calculate (so don't give me a memorized answer for) the Sine Fouries series expansion for $f(t) = t^2$ in 0 < t < 2.

NAME:

2. [25 points] Find a solution y(x) for $0 \le x \le \pi$ to the following boundary value problem:

$$y'' + \frac{1}{25}y = \sum_{n=1}^{\infty} \frac{1}{n} \sin(nx)$$

 $y(0) = y(\pi) = 0$

Do you need a complementary solution $y_c(x)$?

NAME:

3. [25 points] Using separation of variables, solve the following diffusion problem for y(x, t) (In other words, don't use the formula for the solution of the diffusion equation. Derive your result)

$$y_t = 3 y_{xx}$$
$$y_x(0,t) = y_x(2,t) = 0$$
$$y(x,0) = 4 + 3\cos(\pi x)$$

NAME:

4. [25 points] Solve the following PDE for y(x,t) and the given auxiliary conditions for $0 \le x \le 1$ and $t \ge 0$ (Derive your result. Do not use a formula for the solution of the wave equation)

$$y_{tt} = 4 y_{xx}$$
$$y(0,t) = y(1,t) = 0$$
$$y(x,0) = 0$$
$$y_t(x,0) = \sin(\pi x) - \sin(3\pi x)$$