Math 285 - Midterm 3 practice

Total points: 100. Please explain all answers. Calculators, computers, books and notes are not allowed. Suggestion: even if you cannot complete a problem, write out the part of the solution you know. You can get partial credit for it.

1. [25 points] Calculate (so don't give me a memorized answer for) the Sine Fouries series expansion for $f(t)=t^{2}$ in $0<t<2$.

NAME:

2. [25 points] Find a solution $y(x)$ for $0 \leq x \leq \pi$ to the following boundary value problem:

$$
\begin{aligned}
y^{\prime \prime}+\frac{1}{25} y & =\sum_{n=1}^{\infty} \frac{1}{n} \sin (n x) \\
y(0) & =y(\pi)=0
\end{aligned}
$$

Do you need a complementary solution $y_{c}(x)$?

NAME:

3. [25 points] Using separation of variables, solve the following diffusion problem for $y(x, t)$ (In other words, don't use the formula for the solution of the diffusion equation. Derive your result)

$$
\begin{gathered}
y_{t}=3 y_{x x} \\
y_{x}(0, t)=y_{x}(2, t)=0 \\
y(x, 0)=4+3 \cos (\pi x)
\end{gathered}
$$

NAME:

4. [25 points] Solve the following PDE for $y(x, t)$ and the given auxiliary conditions for $0 \leq x \leq 1$ and $t \geq 0$ (Derive your result. Do not use a formula for the solution of the wave equation)

$$
\begin{gathered}
y_{t t}=4 y_{x x} \\
y(0, t)=y(1, t)=0 \\
y(x, 0)=0 \\
y_{t}(x, 0)=\sin (\pi x)-\sin (3 \pi x)
\end{gathered}
$$

