Existence and Uniqueness of Solutions of Second Order D.E.'s

 

           

In a Nut Shell:  Under restrictions solutions exist for linear second order differential

equations that are unique throughout an interval.  The theorem below details these

restrictions.

 

 

Theorem for a general second order, ordinary differential equation of the form:

 

                                      y''  + p(x) y'  + q(x) y  =  g(x)       

 

with initial conditions      y(xo)  =  yo,  y'(xo) = y'o

 

where   p(x),  q(x), and g(x) are continuous functions on an open interval I  that contains

the point  xo .

 

Then there is only one solution , y, that exists throughout the interval I.   i.e.

 

A solution exists for the differential equation .

The differential equation has only one solution.  The solution is unique.

The solution exists throughout the interval I where the coefficients are continuous

and twice differentiable in the interval.

 

 

 

Example:  Determine the longest interval, I, for the following initial value application.

 

                    (x ˗ 5) y''  +  x y'  +  ( ln x ) y  =  0     y(3) = 0,  y'(3) = 2

 

                                y''  +  (x/(x ˗ 5) y'  +  lnx  / (x ˗ 5 ) y   =  0

                                 

       x/(x ˗ 5)  continuous except for  x = 5 

 

    ln x  / (x ˗ 5)  continuous except for x = 5  with restriction  x > 0

 

So the longest interval containing  x = 3   is    ( 0 , 5 )      (result)

 

 

Example:  Determine the longest interval, I, for the following differential equation.

 

      ( x2  ˗ 36)  y (4)  +  6 x2 y '''  +  18 y  =  0

 

     y (4)  +  [ 6 x2 /  ( x2  ˗  36) ] y '''  +  [ 18 / ( x2  ˗  36) ]  y  =  0

 

     y (4)  +  [ 6 x2 / ( x ˗ 6) (x + 6)] y '''  +  [ 18 / ( x ˗ 6) (x+6) ]  y  =  0

 

Points of discontinuity are at   x = 6  and at  x = ˗ 6

 

So the longest interval contains   ( ˗ ∞ , ˗ 6 )  ( ˗6 , 6 )  (6 , ∞ )         (result)

 

 

 




Copyright © 2017 Richard C. Coddington

All rights reserved