First Order Linear Differential Equations, Integrating Factor                                          

 

 

In a Nut Shell: There are two common methods to solve first order, linear, ordinary

differential equations.  They include: 

 

 

Separation of variables    (easiest if the dependent and independent variables separate.)

 

 

Find an integrating factor.

 

 

Review:

  A differential equation,   y ’ + p(x)y = q(x)  is said to be linear if its

   dependent variable y  and its derivative  y ’  are linear. 

   (Linear  =  No nonlinear terms involving   y or y ‘)

 

 

Example of a first order linear, ordinary d.e.  -  separable form

  

    dy/dx   =    y’  =   f(x)              This is the differential equation.

 

    y(a)   =   A    =  constant     =   This is the initial condition on y the dependent variable

 

Solve by direct integration of   dy  =  f(x) dx    (separated form)

 

         y(x)   =   ∫ f(x) dx   +  C     where C is determined using the initial condition

 

Click here for another example using separation of variables.

 

 

Next look at the method of solution using an Integrating factor.

NOTE:    Every first order, linear, ordinary d.e. has an integrating factor.

 

               y ’ + p(x) y  =  q(x)

 

   Integrating factor (IF) is as follows:   IF  =   e ∫ p\(x) dx          Constant of integration

                                                                                                 does not matter here.

        e ∫ p(x) dx     y ’   +   p(x) e ∫ p(x) dx  y   =    q(x) e ∫ p(x) dx    

 

       d/dx [e ∫ p(x) dx  y ]     =    q(x) e ∫ p(x) dx    

 

 

      e ∫ p(x) dx  y    =      ∫ [q(x) e ∫ p(x) dx ] dx

 

                                                                                                       Here the constant of

      y(x)   =    e- ∫ p(x) dx { q(x) e ∫ p(x) dx    }dx    +   C      (solution)     integration matters.

 

 

Click here to continue with an example.

 




Copyright © 2017 Richard C. Coddington

All rights reserved.