Fourier Series - Calculation of Fourier Coefficients  (continued)           

 

In a Nut Shell:    The Fourier Series expansion for the function, f(t), of period  2L is: 

 

 

                              

    f(t)  =     ao /2  + ∑   an cos nπt/L   +  bn sin nπt/L

                             n = 1

 

 

where the Fourier coefficients  ao ,    an   ,  and   bn      are determined by

 

                     L                               L                                               L

ao  =  (1/L) ∫ f(t) dt,   an  =  (1/L) ∫ f(t) cos nπt/L dt   bn  =  (1/L) ∫ f(t) sin nπt/L

                  -L                              -L                                                -L

 

Strategy:   Determine if the function, f(t), is an even function, an odd function, or a function

that is neither even nor odd. Use this information to determine those coefficients that are

zero at the outset.

 

For “even” functions such as  t2, cos t,  t sin t  you only need to calculate the Fourier
coefficients  ao and an  with all the  bn’s being zero.  Note  t sin t, is the product of an
odd function,  t , with another odd function,  sin t , which produces  an "even" function where
 f(t)  =  f(˗ t
).  

 

For “odd” functions such as  t, sin t,  t cos t  you only need to calculate the Fourier
coefficients bn’s with  ao and all the an  being zero.  Note t cos t  is the product of the
odd function, t , with an even function,  cos t , which produces an "odd" function
where  f(-t)  =  ˗ f(t)  .

 

If the function, f(t), is neither even nor odd, then all the Fourier Coefficients need to
be calculated.

 

In summary for  f(t)  and  g(t):     

 

         f odd       an  =  0  for  all  n ≥  0         f even and g even     fg even

 

         f even      bn  =  0  for  all  n ≥  1        f odd and g odd     fg even

 

         f odd and  g even     fg  odd   or         f even and  g odd    fg odd

 

 

Note for an "even" function, f(t),  the product of  f(t) cos nπt/L is also "even" .  Thus

                   L                                L                                            

ao  =  (1/L) ∫ f(t) dt,   an  =  (1/L) ∫ f(t) cos nπt/L dt ,                  bn  =  0

                 -L                               -L                                               

 

                    L                               L                                             

ao  =  (2/L) ∫ f(t) dt,   an  =  (2/L) ∫ f(t) cos nπt/L dt,                   bn  =  0

                   0                               0                                         

 

Click here for a concise summary.

 




Copyright © 2019 Richard C. Coddington

All rights reserved.