Green’s Theorem     Click here for discussion of Topology of Curves and Domains

 

 

In a Nut Shell:  Green's theorem gives the relationship between a line integral around a

simple closed curve, C, and a double integral over the plane region  R  bounded by  C.

It is a special two-dimensional case of the more general Stokes' theorem.

 

 

 

 

 

 

Green’s theorem expressed in its standard form is

 

 ∫ P dx + Q dy =    [ ∂Q/∂x  ˗ ∂P/∂y ] dA

C                          R

 

where  C is a curve enclosing the region, R, with element

of area dA.  The curve, C, is said to be positively oriented

when traveling counterclockwise around C keeping the

region, R, enclosed to the left. 

 

 

 

 

          

 

 

 

 

Note:  The partial derivatives must be continuous throughout R else you will need

to modify the region to avoid discontinuities such as in a region  R  that is not

simply connected.   i.e.  A region that contains a hole.

 

 

 

 

 

Green’s theorem can also be expressed in its “curl form”.

 

             F  =   P(x,y) i  +  Q(x,y) j   and  dr   =  dx i  +  dy j   

  So      F  .  dr   =    F  . T ds   =    Pdx + Q dy 

           C                    C                        C

 

where  T  is the unit tangential vector to the curve, C,  n  is the unit normal vector to the

curve and  ds is the arc length along the curve.  See the figure above.

                              i              j              k

Now  curl F =     ∂/∂x        ∂/∂y        ∂/∂z    =   [∂Q/∂x  -  ∂P/∂y] k             

                            P(x,y)     Q(x,y)       0

   

So     F  .  dr   =    F  . T ds   =        curlz F   dA      (curl form of Green’s Theorem)

         C                    C                        R

 

where    curlz  F is the z-component of curl  F  =  curl  F  .  k

 

 

Click here to continue with discussion of Green’s Theorem.

 




Copyright © 2017 Richard C. Coddington

All rights reserved.