Lagrange Multipliers and Constrained Optimization

 

 

In a Nut Shell:  Sometimes you wish to maximize or minimize a function subject to one

or more limitations (called constraints).  For example, one may wish to find the maximum

volume of an object subject to a restriction on its surface area or you may wish to maximize

profit subject to a restriction on available investment opportunities.   The use of

Lagrange multipliers offers a convenient approach.  Three cases will be discussed.

 

 

 

 

 

Case 1  Suppose you wish to maximize/minimize a function with two independent

variables,  f(x, y), subject to one constraint,  g(x, y) .

 

The functions involved are:                f(x, y)  =  0     and    g(x, y)  =  0

 

Let  f(x,y) be the function to be optimized subject to the constraint relation, g(x,y).

Both   f(x, y) and  g(x, y) must be continuously differentiable functions.

 

Then introduce an arbitrary constant,  λ , called the Lagrange multiplier such that:

 

            Grad f   =  λ  Grad g      ------------------------------------ ( 1 ) 

 

where Grad g means gradient of g

 

So     ∂f/∂x  i   +  ∂f/∂y  j     =   λ  [∂g/∂x  i   +  ∂g/∂y  j ]

 

In scalar form:  ∂f/∂x   =   λ  [∂g/∂x ],  ∂f/∂y   =   λ  [ ∂g/∂y ],  and  g(x, y)  =    0

 

Which gives 3 equations in the 3 unknowns,   x,  y,  and  λ

 

Once solved, the values of  x  and  y  can be input to  f(x, y)  to obtain the optimum.

 

 

 

 

 

Case 2    A similar approach applies to functions with three independent variables

subject to one constraint.  i.e. The result is 4 equations in the 4 unknowns,   x, y, z, and  λ

 

The functions involved are:

 

     f(x, y, z)  =  0    subject to the constraint    g(x, y, z)  =  0

 

                                 ∂f/∂x   =   λ  [∂g/∂x ],    ∂f/∂y   =   λ  [ ∂g/∂y ],

 

                                 ∂f/∂z   =   λ  [ ∂g/∂z ],   and   g(x, y, z)  =    0

 

 

Click here to continue with Case 3.

 




Copyright © 2017 Richard C. Coddington

All rights reserved.