Line Integrals  (continued)

 

 

The line integral can also be expressed in terms of each coordinate variable (x, y, z).

Suppose  F(x, y, z)  is a vector field defined as

 

      F(x, y, z)  =  P(x, y, z) i  + Q(x, y, z) j +  R(x, y, z) k

 

where  P(x, y, z), Q(x, y, z), and R(x, y, z) are continuous functions of x, y, and z

and  dr  is a vector element of length along the curve  C  in space

 

here  dr  =  dx  i   +  dy  j  +  dz  k                         Then the dot product

 

            F(x, y, z)  ·  dr    yields the following line integral along  the curve  C in space

 

              ∫ P(x, y, z) dx  +    ∫ Q(x, y, z) dy  +  ∫ R(x, y, z) dz

             C                            C                          C

 

 

 

 

Both dot products discussed here    F(x, y)  ·  dr(x, y)   and    F(x, y¸z)  ·  dr(x, y,z) 

appear in engineering as the incremental work of the “force”  F  along the path, C.  i.e.

                                 

Suppose  F  is a force acting on a particle in the x-y plane and  r  is the position vector

from the origin to the particle. 

                                   

 

Let the particle move an amount  ds  along the curve, C, in the x-y plane under the

influence of the force  F .  The change in the position vector along the curve

(tangent to C) is   dr .  Then the incremental work, dW, done on the particle by the

force  F  is  the dot product of  F  and  dr .  Thus the line integral along  C  gives the

work, W, done by the force  F  acting on the particle as it moves along C.

 

W  =  F  .  dr   =   F . (dr/dt) dt   and  dr  =  T ds,  T  is the unit tangential vector to the curve, C

           C

 

    Click here for further discussion of line integrals.

 




Copyright © 2017 Richard C. Coddington

All rights reserved.