Your name: \qquad Your NetID: \qquad

- No notes, books, or electronics out. No hats or sunglasses on during the exam.
- When space is provided, show work that justifies your answer. In those problems, no credit will be given for correct answers without proper justification.
- Scratch paper is provided at the end of the exam. It will not be graded.
- No need to simplify your answers.
- Continuing to write after time has ended will result in the loss of all points on the pages written on.
- Mark your Discussion Section in the table below:

Discussion Section	Instructor	$\begin{array}{\|c} \hline \text { Time } \\ \text { (TuTh) } \\ \hline \end{array}$	Discussion Section	Instructor	$\begin{gathered} \text { Time } \\ \text { (TuTh) } \\ \hline \end{gathered}$
ADA	Ferguson Ferguson	$\begin{aligned} & 8 \mathrm{am} \\ & 9 \mathrm{am} \end{aligned}$	BDA	Huo Merriman	8 am
$-\begin{aligned} & \mathrm{ADB} \\ & \mathrm{ADC} \end{aligned}$			$\begin{aligned} & \mathrm{BDA} \\ & \mathrm{BDB} \end{aligned}$		9am
	Zhang	$\begin{aligned} & 9 \mathrm{am} \\ & 10 \mathrm{am} \end{aligned}$	BDC	Butler	10am
ADD	Tian	$\begin{aligned} & \text { 10am } \\ & \text { 11am } \end{aligned}$	BDD	Collier	11am
ADE	Ackermann	$12 \mathrm{pm}$	BDE	Ford	12pm
ADF	Aramyan	$1 \mathrm{pm}$	BDF	Menon	1 pm
ADG	Aramyan	$\begin{aligned} & 1 \mathrm{pm} \\ & 2 \mathrm{pm} \end{aligned}$	BDG	Menon	2pm
ADH	Shakan	$\begin{aligned} & 2 \mathrm{pm} \\ & 3 \mathrm{pm} \end{aligned}$	BDH	Shi	3 pm
ADI	Shakan	$\begin{aligned} & 3 \mathrm{pm} \\ & 4 \mathrm{pm} \end{aligned}$	BDI	Shi	4 pm
ADJ	Li	$8 \mathrm{am}$	BDJ	Chen	9 am
ADK	Li Klajbor Goderich	$\begin{aligned} & 8 \mathrm{am} \\ & 9 \mathrm{am} \end{aligned}$	BDK	Collier	10am
ADL		$10 \mathrm{am}$	BDL	Butler	12 pm
ADM	Klajbor Goderich	2 pm	BDM	Ford	2 pm
ADN	Zhang	$3 \mathrm{pm}$	$\begin{aligned} & \mathrm{BDN} \\ & \mathrm{BDO} \end{aligned}$	Song	3 pm
$\begin{aligned} & \mathrm{AD} 1 \\ & \mathrm{AD} 2 \end{aligned}$		11am	BDO	Song	4 pm
	Loeb	1 pm	BDP	Chen	8 am
			BDQ	Karve	4 pm
			BDR	Karve	12 pm
			BDS	Huo	10 am

Question:	1	2	3	4	5	6	7	8	9	10	11	12	Total
Points:	1	4	2	5	4	4	5	3	5	4	3	2	42
Score:													

1. (1 point) Mark your correct discussion section on the front page.
2. (4 points) Consider the vectors $\mathbf{u}=(1,1,1), \mathbf{v}=(2,-1,2)$ in \mathbb{R}^{3}. Compute:
(a.) (1 point) $-\mathbf{u}+\mathbf{2 v}=$
(b.) $\quad(2$ points $) \operatorname{proj}_{\mathbf{u}} \mathbf{v}=$
(c.) (1 point) $\mathbf{u} \cdot \mathbf{v}=$
3. (2 points) For two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{3}, which of the following does $|\mathbf{u} \times \mathbf{v}|$ measure? Circle your answer.
(a.) The length of $\mathbf{u}-\mathbf{v}$.
(b.) The area of the parallelogram determined by \mathbf{u} and \mathbf{v}.
(c.) The volume of the parallelepiped determined by \mathbf{u}, \mathbf{v} and $\mathbf{u} \times \mathbf{v}$.
4. (5 points) Let A be the plane given by $x-y+2 z=1$ and B the plane given by $x+y+z=2$.
(a.) Find a normal vector \mathbf{n} for the plane A. (1 point)
(b.) Find an equation of the plane C which contains the origin and is perpendicular to both A and B. Show your work! (4 points)
5. (4 points) Find the volume of the parallelepiped determined by the vectors $\mathbf{u}=(1,1,0)$, $\mathbf{v}=(0,1,1)$, and $\mathbf{w}=(1,1,1)$. Show your work!
6. (4 points) Let L be the line given by the parametric equations $x=1+2 t y=-t$, and $z=2+t$. Let Q be the intersection point of the line L with the plane $3 x-2 y+z=14$. Find the coordinates of Q. Show your work!
7. (5 points) Find the distance between the two parallel planes $10 x+2 y-2 z=5$ and $5 x+y-z=1$. Show your work!
8. (3 points) Circle the equation for the quadric surface shown at right.
9. $x^{2}+y^{2}-z^{2}=-1$
10. $x^{2}-y^{2}+z^{2}=1$
11. $x-y^{2}+z=1$
12. $x^{2}-y^{2}-z^{2}=1$
13. $-x^{2}+y^{2}+z^{2}=1$

14. (5 points) Consider the function $f(x, y)=\frac{2 x y-x^{2} y}{x^{2}+y^{2}}$ for $(x, y) \neq(0,0)$. Evaluate $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$, or explain why it does not exist.
15. (4 points) Consider the function $f(x, y)=\ln (2 x+y)+\sin (x y)$. Show your work! (2 points each)
(a.) Compute $f_{x}(0,1)$.
(b.) Compute $f_{x y}\left(\frac{\pi}{2}, 1\right)$.
16. (3 points) Let $f(x, y)=\frac{x^{2} y}{x^{2}+y^{2}}$ for $(x, y) \neq(0,0)$ and at $f(0,0)=1$. Circle the true statement.
(a.) f is continuous at $(0,0)$.
(b.) $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist so f is discontinuous at $(0,0)$.
(c.) $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exists, but it is not equal to $f(0,0)$, so f is discontinuous at $(0,0)$.
17. (2 points) Extra Credit Problem Let $f(x, y)=\frac{2 x^{2} y}{x^{2}+y^{2}}$.
(a.) Find a $\delta>0$ such that, if $0<\sqrt{x^{2}+y^{2}}<\delta$, then $|f(x, y)|<\frac{1}{5}$. Justify your answer. (1 point)
(b.) Find an expression for $\delta>0$ in terms of ϵ so that for every $\epsilon>0$, whenever $0<\sqrt{x^{2}+y^{2}}<\delta$, then $|f(x, y)|<\epsilon$. Justify your answer. (1 point)

Scratch work will not be graded.

Scratch work will not be graded.

Scratch work will not be graded.

