Your name: \qquad Your NetID: \qquad

- No notes, books, or electronics out. No hats or sunglasses on during the exam.
- Show work that justifies your answer. No credit will be given for correct answers without proper justification.
- Scratch paper is provided at the end of the exam. It will not be graded.
- No need to simplify your answers.
- Continuing to write after time has ended will result in the loss of all points on the pages written on.
- Mark your Discussion Section in the table below: Failure to correctly mark your section will result in a 1 point deduction

Discussion Section	Instructor	$\begin{gathered} \text { Time } \\ \text { (TuTh) } \end{gathered}$	$\begin{gathered} \text { Discussion } \\ \text { Section } \end{gathered}$	Instructor	$\begin{gathered} \text { Time } \\ \text { (TuTh) } \end{gathered}$
ADA	Ferguson	8 am	B BDA	Huo Merriman	8 am
$\begin{aligned} & \mathrm{ADB} \\ & \mathrm{ADC} \end{aligned}$	Ferguson	9am	$\begin{aligned} & \mathrm{BDB} \\ & \mathrm{BDC} \end{aligned}$		9 am
	Zhang	10am		Butler	10am
ADD	Tian	11am	BDD	Collier	11am
ADE	Ackermann	12pm	BDE	Ford	12 pm
ADF	Aramyan	1 pm	BDF	Menon	1 pm
ADG	Aramyan	2 pm	BDG	Menon	2 pm
ADH	Shakan	3 pm	BDH	Shi	3 pm
ADI	Shakan	4 pm	BDI	Shi	4 pm
ADJ	Li	8 am	BDJ	Chen	9 am
ADK	Li	9 am	BDK	Collier	10am
ADL	Klajbor Goderich	10 am	BDL	Butler	12 pm
ADM	Klajbor Goderich	2 pm	BDM	Ford	2 pm
ADN	Zhang	3 pm	BDN	Song	3 pm
AD1	Quan	11am	BDO	Song	4 pm
AD2	Loeb	1 pm	BDP	Chen	8 am
			BDQ	Karve	4 pm
			BDR	Karve	12 pm
			BDS	Huo	10 am

Question:	1	2	3	4	5	6	7	8	9	Total
Points:	3	2	4	4	6	4	4	7	6	40
Score:										

1. (3 points) Consider the function $f(x, y)=x e^{x y}$.
a. (2 points) Find an equation of the tangent plane to the surface $z=f(x, y)$, at the point ($1,0,1$).
b. (1 points) Use linear approximation to approximate $f(1.1,-0.1)$.
2. (2 points) Given $e^{z}=x y z$, find $\frac{\partial z}{\partial x}$.
3. (4 points) Given $f(x, y)=\sin (x y)$, find the maximum rate of change of f at the point $(1,0)$, and the direction in which this occurs.
4. (4 points) Find the work done by the force field $\mathbf{F}(x, y, z)=(\sin x, \cos y, x z)$ in moving a particle from the origin to $(1,-1,1)$ along the curve $x(t)=t^{3}, y(t)=-t^{2}, z(t)=t$. (No need to evaluate expressions like $\sin (1), \sin (2)$, et cetera.)
5. (6 points) Find the extreme values of the function $f(x, y)=3 x+y$, under the constraint $4 x^{2}+y^{2}=1$.
6. (4 points) Find the arclength of the curve $\mathbf{r}(t)=(\cos t, \sin t, \ln (\cos t)), 0 \leq t \leq \frac{\pi}{4}$.
7. (4 points) Find a vector function $\mathbf{r}(t)$ that represents the curve of intersection of the two surfaces: $z=\sqrt{x^{2}+y^{2}}$ and $z=1+y$.
8. (7 points) Evaluate $\int_{C} x^{3} d s$, where C consists of the arc C_{1} of the curve $y=\frac{x^{3}}{3}$ from $(0,0)$ to $\left(1, \frac{1}{3}\right)$ followed by the line segment C_{2} from $\left(1, \frac{1}{3}\right)$ to $\left(2, \frac{4}{3}\right)$.
9. (6 points) Given $f(x, y)=x^{3}+y^{3}+3 x y$. Find all of the critical points of f, and classify them into local min(s), local max(es), and saddle point(s).

Scratch work will not be graded.

Scratch work will not be graded.

Scratch work will not be graded.

