Maxima and Minima of Functions on a Closed Domain                                  

 

In a Nut Shell:  Maximum and minimum values of functions hold special interest in

calculus.  Minimizing cost or maximizing profit functions are two common applications.

 

If satisfied, the following Extreme Value Theorem guarantees f(x) has extreme values.

 

If  f(x) is continuous on a closed interval [a,b], then there exists numbers c  and  d

in [a,b]  such that   f(c) is the minimum and  f(d)  is the maximum value of f on [a,b].

 

 

Click here to review the first derivative test and the second derivative test.

 

 

The maximum and minimum values of  y(x) on the curve  of    y(x)  are:

 

Either at the “top”  of  or at the “bottom” of  the curve the “slope” must be zero.

                                

 

So   dy/dx  =  y’(x)  =  0  at either location  c  or  d;  dy/dx  is the slope of the curve  y(x)

               

 

A location, x = c,  where the slope of f(x) is zero      i.e.  df(x)/dx| x = c  =  0

 is called a critical point of f(x).

 

   Note:      df(x)/dx| x = c  =  0,      f ’(c)  =  0  (the slope is zero at the point  x = c )

 

    But      f ’(c)  might not exist  (vertical tangent to curve at  x  =  c )

 

 

The maximum or minimum values of  y(x)  may take on local or global values. 

Let   D  be the domain on which y(x) is defined.  Then at  x  =  c :

 

     f(c) is a global maximum if   f(c) ≥  f(x)  for all   x   in  D

   

     f(c) is a global minimum if   f(c)  ≤  f(x)  for all   x   in  D

 

     In both cases    df(x)/dx| x =c ,    f ’(c)  =  0

 

Click here for examples.

 



Return to Notes for Calculus 1

Copyright © 2019 Richard C. Coddington

All rights reserved.