Partial Derivatives of Functions (continued)                                        

 

 

 Physical Interpretation of the partial derivative   ∂f(x,y)/ ∂y

 

 Consider a surface    S   given by    z  =  f(x,y).   The intersection of the plane, PL, given

 by   x  =  constant     with the surface,  S,  defines the curve of intersection,  C.   Let the

 tangent line to  C  at point P with coordinates  (a, b, c)   be  T.

               

 

 

 

 

 

Then the slope of the line tangent to the curve C at the point (a,b,c) in the y-direction is:

 

                     fy(x,y)  =    ∂f(x,y)/ ∂y      evaluated at the point P  (a,b,c)

 

 

Similarly one can imagine a plane, y = constant, intersecting the surface  z 

along a curve D (not shown).

 

 The slope of the line tangent to the curve D at the point (a,b,c) in the x-direction is:

 

                     fx(x,y)  =    ∂f(x,y)/ ∂x      evaluated at the point  P  (a,b,c)

 

 

 

 

 

Click here for an example.      Click here for discussion of linear approximation.

 




Copyright © 2018 Richard C. Coddington

All rights reserved.