Planes in Space                         

 

 

In a Nut Shell:   The equation of a plane is found by taking the dot product of any line

in the plane with its normal vector, n .  The result is that the dot product is zero since the

normal vector is perpendicular to the arbitrary line in the plane.

 

 

 

Strategy:  Let    r  =  < x, y, z >  be a vector from the origin, O, to an arbitrary point

P(x,y,z) in  the plane.  Let    ro  =  < x0, y0, z0  >   be a vector from the origin to the point

Po(xo, yo, zo) also in the plane.  So the vector  r  -  ro     is a vector within the plane to

be determined.  Let  < i,  j,  k >  be unit vectors along the  x, y, and z axes.

               

 

The dot product of  the vector  r   -  ro  with the normal vector   n  ( n  is normal to

every line in the plane) must equal zero since the vectors are perpendicular to each other.

                                                ( r   -  ro  ) ∙  n    =  0

 

If   n  =  a i  +  b j  +  c k , then the equation of the plane has the following form:

 

                           (x  -  xo) a  +  (y  -  yo) b  +  (z  -  zo) c  =  0

 

 

Note:  The normal to a plane can be determined by taking the cross product of any

two non-parallel lines (vectors) in the plane. 

 

Further note:   The angle between any two intersecting planes can be determined by

finding the normal to each plane, say  n1  and  n2 , and then by finding the dot product

of these two vectors.   Let   θ   be the angle between  n1  and  n2 

 

                           cos  θ   =    n1  ∙ n2  /  | n1 |  | n2  |

 

Click here for an example.

 




Copyright © 2017 Richard C. Coddington

All rights reserved.