Areas and Arc Lengths using Polar Coordinates

 

 

In a Nut Shell:  Areas and arc lengths expressed in polar coordinates can be calculated

in much the same way as for Cartesian coordinates. 

 

Strategy:  For areas start with an expression for the element of area, dA  =  ½ r2 . 

For arc lengths start with the expression for the differential arc length,  dS  where

dS  =  √ [ ( r2  +  (dr/)2 ] .  In both cases integrate over the region to get the total area

or total arc length.

 

 

In polar coordinates     r = r(θ)   where  r  is the radial distance to the point, P, on the curve

r = r(θ)  and  θ  is the angle of the ray to the point, P, shown in the figure below.,

 

                        

 

The element of area, dA, is the ”triangular” area of  OPQ     dA  =  ½ r2

 

The element of arc length, dS, is the length along the arc, PQ. 

 

From the Pythagorean Theorem  dS  =  √ ( dx2 + dy2 ) .  Convert to polar coordinates using

 

x  =  r cos θ  ,  y  =  r sin θ  [ remember  r  =  r(θ) ]     Use the “chain rule”.

 

dx = (dr/) cos θ + r(θ) (- sin θ )    and  dy = (dr/) sin θ + r(θ)  cos θ

 

so    dS  =  √ [ ( r2  +  (dr/)2 ]

 

 

                                                                                     θ = b

So the total area under the curve,  r = r(θ) is       A  =  ∫ ½ [ r(θ)2 ]

                                                                                    θ = a

 

                                                           θ = b

So the total arc length,  L,           L  =    √ [ ( r2  +  (dr/)2 ]

                                                         θ = a  

 

 

Click here for examples. 

                                                               




Copyright © 2017 Richard C. Coddington

All rights reserved.