Power Series – Determining Convergence and Interval of Convergence

 

 

 

In a Nut Shell:  Infinite series contain a series of constant terms.  On the other hand,

a power series contain an infinite number of terms each involving the independent

variable x. 

 

There are two common forms for power series as follows:

 

                                                                                 

       ∑ an xn   =    ∑ un           and       ∑ an ( x – c )n   =   ∑ un 

      n=0                n=0                      n=0                        n=0

 

 

 

 

 

The objective is to determine where the power series converges.  There are three

possibilities.  The power series may converge at only one point, say  x = a,  it may

converge for all  x, or it may converge for some positive value of  R  such that

the series converges if   | x – a |  <   R and diverges if   | x – a |  >  R.

 

 

 

 

 

Strategy:  Use the ratio test to evaluate the radius of convergence, R, of a power

series and to find the region of convergence (what values of   x  that it converges).

 

 

 

 

Reminder of the Ratio Test for a Series of Constant Terms  ∑ an  

 

   Ratio Test  -  If  P= lim   | (an+1)/ an |  exists, then the infinite series

                               n → ∞

    ∑ an  converges absolutely if P < 1, diverges if P > 1 (or P = ∞)

 

         If   P = 1 this  test fails.

 

 

Click here to continue discussion of power series.

 




Copyright © 2017 Richard C. Coddington

All rights reserved.