1-D Wave Equation  (String Vibrations)     (continued)                 

 

 

Strategy:  A general approach to solving the 1-D wave equation

 

                                                 2u/∂t2   =   a22u/∂x2  

 

is to assume separation of variables.  i.e.  Assume:

 

                                   u(x,t)  =  X(x) T(t)

 

 

Substitution of    u(x,t)  =  X(x) T(t)   into the wave equation gives

 

                            X(x) dT2/dt2  =  a2 d2X/dx2

 

Then by division     (d2X/dx2)/X  =  (dT2/dt2)/a2T   =   ˗  λ  =  separation constant

 

So                d2X/dx2  +  λ X  =  0     and    dT2/dt2 + λa2T   =  0

 

 

Note:  To solve the 1-D wave equation you  need to solve two eigenvalue problems.

Further note that the separation constant could be zero, negative, or positive.

Examine each case separately.

 

 

Solution of eigenvalue problem.   Strategy:  Start with the eigenvalue problem for X(x).

 

                             d2X/dx2  +  λ X  =  0       subject to the boundary conditions

 

                            X(0)  =  X(L)  =  0

 

And consider each case for  λ  separately.

 

The cases are   λ =0,  λ < 0,  and  λ > 0.

 

The result of this calculation yields the eigenvalues   λn  and eigenvectors,   Xn(x). 

 


Strategy:  Substitute the eigenvalues,    λn  ,  into the equation for T(t) to obtain

 

                                   dT2/dt2  +  λna2T   =  0

   

Solution of this equation normally yields     Tn(t) =  Cn cos a√λnt + Dn sin a√λnt

 

 

Then combine with  Xn(x) with Tn(t)   to obtain the product solution   Tn(t) Xn(x). 

 

                   un(x,t)  =  [Cn cos a√λnt + Dn sin a√λnt ] Xn(x).  

 

      

Click here to continue discussion on vibrations of a string.

      




Copyright © 2017 Richard C. Coddington

All rights reserved.