Surface Integrals (continued)  Click here for surface integrals involving “oriented” surfaces.

 

 

Note:  Domain D shown in the previous figure is the “area” projected on to the

relevant plane.  In this case it is projected on to the x-y plane since the surface, S,

was described by   z =  g(x,y). 

 

 

When the surface, S, is described by    z  = g(x,y)     (recall let   u  =  x  and  v  =  y)         

the position vector to an arbitrary point on S  is      r  =  xi  +  yj  +  g(x,y)k   

 

Then one can use x and y rather than u and v as the parameters describing the surface, S. 

So the normal vector to  S is   N(u,v)  =  N(x,y)  =   rx  x  ry     which yields the

Following   3 x 3 determinant.    Note:  N  is not a unit vector.

 

                                 i             j           k                      i            j           k               

 N(x,y)  =    det     ∂x/∂x    ∂y/∂x    ∂g/∂x   =    det    1           0      ∂g/∂x      

                              ∂x/∂y    ∂y/∂y    ∂g/∂y                  0           1      ∂g/∂y

 

 

N(x,y)  =  - ∂g/∂x i   -  ∂g/∂y j  + 1  k     and     | N(x,y) |  = [1 + (∂g/∂x)2 + (∂g/∂x)2]

 

 

Thus      dS  =  [1 + (∂g/∂x)2 + (∂g/∂x)2] dx dy        and 

 

              IS  =  f(x, y, z) dS  =    f(x, y, g(x,y)) [1 + (∂g/∂x)2 + (∂g/∂x)2] dx dy

                       S                            D

 

If, on the other hand,  the surface was described by  y  =  g(x,z), then D would be

the “area” projected on to the x-z plane, etc.

 

 

 

 

Options:  You have two options in evaluating surface integrals.

 

 

Option 1:     You could attempt direct evaluation of the surface integral

 

                       IS  =       f(x,y,z)  dS

                                 S

 

Option 2:    You could use a transformation     dS  =  |  ru x rv  |  dA

 

                        IS  =       f(x,y,z)  dS  =        f(x,y,z)  |  ru x rv  |  dA

                                  S                              D

 

 

Click here for a discussion of strategy using options 1 and 2.

 

 

 




Copyright © 2017 Richard C. Coddington

All rights reserved.