1. Consider the vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in \mathbb{R}^{2} shown at right.

For each of the following, circle the best answer (2 points each)

(a) $\mathbf{w}=$| $\mathbf{u}+2 \mathbf{v}$ | $2 \mathbf{u}+\mathbf{v}$ | $-2 \mathbf{u}+\mathbf{v}$ | $-\mathbf{u}+2 \mathbf{v}$ | $\mathbf{u}-2 \mathbf{v}$ | $2 \mathbf{u}-\mathbf{v}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

(b) $\operatorname{proj}_{\mathbf{u}} \mathbf{v}=$| \mathbf{u} | $\frac{1}{2} \mathbf{u}$ | $2 \mathbf{v}$ | $\frac{1}{2} \mathbf{v}$ | $2 \mathbf{w}$ | $\mathbf{w}+\mathbf{v}$ | $-2 \mathbf{v}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(c) $\mathbf{u \cdot \mathbf { w }} \quad \begin{aligned} & > \\ & < \\ & = \\ & \end{aligned}$
2. Suppose $f(x, y)$ has the contour plot below right, with points labelled. Circle the best answer to each of the following questions: (1 point each)
(a) $f(c)$ is:
positive negative 0
(b) $\frac{\partial f}{\partial x}(b)$ is: positive negative 0
(c) $\frac{\partial^{2} f}{\partial y^{2}}(d)$ is: positive negative 0
(d) Circle one:

$$
\frac{\partial f}{\partial x}(a)>\frac{\partial f}{\partial x}(c) \quad \frac{\partial f}{\partial x}(a)<\frac{\partial f}{\partial x}(c)
$$

3. Circle the equation for the quadric surface shown at right. (2 points)

1. $x^{2}-y^{2}+z^{2}=1$
2. $-x^{2}+y^{2}+z^{2}=1$
3. $x^{2}+y^{2}-z^{2}=-1$
4. $x-y^{2}+z=1$
5. $x^{2}-y^{2}-z^{2}=1$

6. For each function $f(x, y)$, label one graph that most closely matches the formula: (2 points each)
(A) $f(x, y)=(-y) 2^{\left(-x^{2}-y^{2}\right)}$
(B) $f(x, y)=e^{x} \cos (y)$
(C) $f(x, y)=\cos (x-y)$
\square

\square

\square
\square
\square
7. Let $\mathbf{a}=\langle 1,1,2\rangle, \mathbf{b}=\langle 0,3,1\rangle$. Check the boxes next to all (and only) the correct completions of the sentence. Mark all correct answer(s)! There may be more than one. (2 points)
"The quantity $|\mathbf{a} \times \mathbf{b}| \ldots$
 ...is the area of the triangle with two sides \mathbf{a} and $\mathbf{b} . "$

8. Mark exactly one box corresponding to the correct ending to the sentence. (2 points)
"The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{x^{4}+y^{4}}$ fails to exist because...

\square...the partial derivatives of $\frac{x^{3} y}{x^{4}+y^{4}}$ at $(0,0)$ do not exist."

9. Consider the function

$$
f(x, y)= \begin{cases}x^{2}+y^{2} & \text { for } x<0 \\ x & \text { for } x \geq 0 \text { and }(x, y) \neq(0,0) \\ 1 & \text { for }(x, y)=(0,0)\end{cases}
$$

Check the box for the true statement (and check no other boxes). (2 points)
 f is continuous at $(0,0)$.
$\square \lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist so f is discontinuous at $(0,0)$.
\square $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exists, but it is not equal to $f(0,0)$, so f is discontinuous at $(0,0)$.
8. Find a normal vector \mathbf{n} to the plane containing the points $(1,0,0),(0,2,0)$ and $(0,0,3)$. ($\mathbf{3}$ points)

$$
\mathbf{n}=\langle\quad, \quad\rangle
$$

9. Let $f(x, y)$ be a function with values and derivatives in the table. Use linear approximation to estimate $f(2.1,3.9)$. (3 points)

(x, y)	$f(x, y)$	$\frac{\partial f}{\partial x}(x, y)$	$\frac{\partial f}{\partial y}(x, y)$	$\frac{\partial^{2} f}{\partial x^{2}}(x, y)$	$\frac{\partial^{2} f}{\partial y^{2}}(x, y)$	$\frac{\partial^{2} f}{\partial x \partial y}(x, y)$
$(-1,3)$	0	4	4	2	-7	-2
$(2,1)$	2	-1	-3	-1	-1	-2
$(2,4)$	7	1	3	-1	-9	-5
$(3,6)$	1	-3	-5	0	-1	-2

10. For which value of c is the volume of the parallelepiped determined by the vectors $\langle 0,1,1\rangle,\langle 2,3,5\rangle$, and $\langle 1,1, c\rangle$ equal to zero? (3 points)
```
c=
```

11. A plane P has equation $2 x+3 y-z=5$. A line L is parameterized by $\mathbf{r}(t)=\langle 1,1,0\rangle+t\langle 2, a-1, a-3\rangle$ for some number a. Find the value of a for which the line L is contained in the plane P. (2 points)
12. For functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $\mathbf{r}(t)=\langle x(t), y(t)\rangle$, let $F(t)=f(\mathbf{r}(t))=f(x(t), y(t))$.
(a) Write the Chain Rule formula (2 points) :

$$
F^{\prime}(t)=
$$

(b) Suppose $f(x, y)=x^{3}+2 x y+y^{2}+x+y$.
(i) Compute $\frac{\partial f}{\partial x}(1,0)$ and $\frac{\partial f}{\partial y}(1,0) \quad(3$ points) :

$$
\frac{\partial f}{\partial x}(1,0)=
$$

$$
\frac{\partial f}{\partial y}(1,0)=
$$

(ii) Give the equation for the tangent plane to $f(x, y)$ at the point $(1,0,2)$. (2 points)
\square
(iii) Let $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ be the position of a particle at time t. Let $F(t)=f(\mathbf{r}(t))$. Suppose $\mathbf{r}(0)=\langle 1,0\rangle$. Give any possible nonzero velocity vector $\mathbf{r}^{\prime}(0)=\left\langle x^{\prime}(0), y^{\prime}(0)\right\rangle$ of the particle at time $t=0$ which would imply that $F^{\prime}(0)=0$. You must justify your answer. (2 points)

$$
\mathbf{r}^{\prime}(0)=\langle\quad, \quad\rangle
$$

13. Compute the distance from the point $(1,3,1)$ to the plane whose equation is $2 x+y-z=16$. (3 points)
14. Extra Credit Problem. Let $f(x, y)=\frac{x \sin ^{2}(x)}{x^{2}+y^{2}}$.
(a) Find a $\delta>0$ such that if $0<|\langle x, y\rangle|<\delta$ then $|f(x, y)|<\frac{1}{10}$. Justify your answer. (1 point)
(b) Find an expression for $\delta>0$ in terms of ϵ so that for every $\epsilon>0$, if $0<|\langle x, y\rangle|<\delta$ then $|f(x, y)|<\epsilon$. Justify your answer. (1 point)

Scratch work may go below and on the back of this sheet.

