1. Consider the vectors \mathbf{u} , \mathbf{v} , \mathbf{w} in \mathbb{R}^2 shown at right.

- **2.** Suppose f(x, y) has the contour plot below right, with points labelled. Circle the best answer to each of the following questions: (1 point each) y
 - (a) f(c) is: **positive negative 0**
 - (b) $\frac{\partial f}{\partial x}(b)$ is: **positive negative 0**
 - (c) $\frac{\partial^2 f}{\partial y^2}(d)$ is: **positive negative 0**
 - (d) Circle one:

$$\frac{\partial f}{\partial x}(a) > \frac{\partial f}{\partial x}(c) \qquad \qquad \frac{\partial f}{\partial x}(a) < \frac{\partial f}{\partial x}(c)$$

- 3. Circle the equation for the quadric surface shown at right. (2 points)
 - 1. $x^{2} y^{2} + z^{2} = 1$ 2. $-x^{2} + y^{2} + z^{2} = 1$ 3. $x^{2} + y^{2} - z^{2} = -1$ 4. $x - y^{2} + z = 1$ 5. $x^{2} - y^{2} - z^{2} = 1$
- **4.** For each function f(x, y), label one graph that most closely matches the formula: (2 points each)

у

5. Let $\mathbf{a} = \langle 1, 1, 2 \rangle$, $\mathbf{b} = \langle 0, 3, 1 \rangle$. Check the boxes next to *all* (and only) the correct completions of the sentence. Mark all correct answer(s)! There may be more than one. (2 points)

"The quantity $|\mathbf{a} \times \mathbf{b}|$...

... is the volume of the parallelepiped spanned by **a**, **b**, and **a** × **b**."
... is the area of the parallelogram spanned by **a** and **b**."
... is the area of the triangle with two sides **a** and **b**."
... is equal to |**a**||**b**| cos(θ)."
... is equal to |**a**||**b**| sin(θ)."
... is equal to |**a**. **b**."

6. Mark exactly one box corresponding to the correct ending to the sentence. (2 points)

"The limit $\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^4+y^4}$ fails to exist because...

...the numerator and denominator are both zero at (0,0)."

...the partial derivatives of $\frac{x^3 y}{x^4 + y^4}$ at (0,0) do not exist."

...the limits as one approaches (0,0) along the lines x = 0 and y = 0 are different."

...the limits as one approaches (0, 0) along the lines x = 0 and y = x are different."

...the limits as one approaches (0,0) along the paths $y = x^2$ and x = 0 are different."

7. Consider the function

$$f(x, y) = \begin{cases} x^2 + y^2 & \text{for } x < 0\\ x & \text{for } x \ge 0 \text{ and } (x, y) \ne (0, 0)\\ 1 & \text{for } (x, y) = (0, 0) \end{cases}$$

Check the box for the true statement (and check no other boxes). (2 points)

$$f \text{ is continuous at } (0,0).$$

$$\lim_{(x,y)\to(0,0)} f(x,y) \text{ does not exist so } f \text{ is discontinuous at } (0,0).$$

$$\lim_{(x,y)\to(0,0)} f(x,y) \text{ exists, but it is not equal to } f(0,0), \text{ so } f \text{ is discontinuous at } (0,0).$$

8. Find a normal vector **n** to the plane containing the points (1,0,0), (0,2,0) and (0,0,3). (3 points)

9. Let f(x, y) be a function with values and derivatives in the table. Use linear approximation to estimate f(2.1, 3.9). (3 points)

	(<i>x</i> , <i>y</i>)	f(x, y)	$\frac{\partial f}{\partial x}(x,y)$	$\frac{\partial f}{\partial y}(x,y)$	$\frac{\partial^2 f}{\partial x^2}(x,y)$	$\frac{\partial^2 f}{\partial y^2}(x,y)$	$\frac{\partial^2 f}{\partial x \partial y}(x, y)$
	(-1,3)	0	4	4	2	-7	-2
Ī	(2,1)	2	-1	-3	-1	-1	-2
	(2,4)	7	1	3	-1	-9	-5
	(3,6)	1	-3	-5	0	-1	-2

 $f(2.1,3.9) \sim$

10. For which value of *c* is the volume of the parallelepiped determined by the vectors (0, 1, 1), (2, 3, 5), and (1, 1, c) equal to zero? **(3 points)**

c =

11. A plane *P* has equation 2x + 3y - z = 5. A line *L* is parameterized by $\mathbf{r}(t) = \langle 1, 1, 0 \rangle + t \langle 2, a - 1, a - 3 \rangle$ for some number *a*. Find the value of *a* for which the line *L* is contained in the plane *P*. (2 points)

- **12.** For functions $f : \mathbb{R}^2 \to \mathbb{R}$ and $\mathbf{r}(t) = \langle x(t), y(t) \rangle$, let $F(t) = f(\mathbf{r}(t)) = f(x(t), y(t))$.
 - (a) Write the Chain Rule formula (2 points) :

F'(t) =

- (b) Suppose $f(x, y) = x^3 + 2xy + y^2 + x + y$.
 - (i) Compute $\frac{\partial f}{\partial x}(1,0)$ and $\frac{\partial f}{\partial y}(1,0)$ (3 points):

$$\frac{\partial f}{\partial x}(1,0) = \qquad \qquad \frac{\partial f}{\partial y}(1,0) =$$

(ii) Give the equation for the tangent plane to f(x, y) at the point (1,0,2). (2 points)

(iii) Let $\mathbf{r}(t) = \langle x(t), y(t) \rangle$ be the position of a particle at time *t*. Let $F(t) = f(\mathbf{r}(t))$. Suppose $\mathbf{r}(0) = \langle 1, 0 \rangle$. Give any possible nonzero velocity vector $\mathbf{r}'(0) = \langle x'(0), y'(0) \rangle$ of the particle at time t = 0 which would imply that F'(0) = 0. You must justify your answer. (2 points)

13. Compute the distance from the point (1,3,1) to the plane whose equation is 2x + y - z = 16. (3 points)

- 14. Extra Credit Problem. Let $f(x, y) = \frac{x \sin^2(x)}{x^2 + y^2}$.
 - (a) Find a $\delta > 0$ such that if $0 < |\langle x, y \rangle| < \delta$ then $|f(x, y)| < \frac{1}{10}$. Justify your answer. (1 point)

(b) Find an expression for $\delta > 0$ in terms of ϵ so that for *every* $\epsilon > 0$, if $0 < |\langle x, y \rangle| < \delta$ then $|f(x, y)| < \epsilon$. Justify your answer. (1 **point**)

Scratch work may go below and on the back of this sheet.

Scratch work may go below.