1. Consider the vectors \(\mathbf{u}, \mathbf{v}, \mathbf{w} \) in \(\mathbb{R}^2 \) shown at right.

For each of the following, circle the best answer (2 points each)

(a) \(\mathbf{w} = \begin{bmatrix} \mathbf{u} + 2\mathbf{v} & 2\mathbf{u} + \mathbf{v} & -2\mathbf{u} + \mathbf{v} & -\mathbf{u} + 2\mathbf{v} & \mathbf{u} - 2\mathbf{v} & 2\mathbf{u} - \mathbf{v} \end{bmatrix} \)

(b) \(\text{proj}_\mathbf{u} \mathbf{v} = \begin{bmatrix} 2\mathbf{u} & \frac{1}{2} \mathbf{u} & 2\mathbf{v} & \frac{1}{2} \mathbf{v} & 2\mathbf{w} & \mathbf{w} + \mathbf{v} & -2\mathbf{v} \end{bmatrix} \)

(c) \(\mathbf{u} \cdot \mathbf{w} = \)

>

<

=

0.

2. Suppose \(f(x, y) \) has the contour plot below right, with points labelled. Circle the best answer to each of the following questions: (1 point each)

(a) \(f(c) \) is: positive negative 0

(b) \(\frac{\partial f}{\partial x} (b) \) is: positive negative 0

(c) \(\frac{\partial^2 f}{\partial y^2} (d) \) is: positive negative 0

(d) Circle one:

\(\frac{\partial f}{\partial x} (a) > \frac{\partial f}{\partial x} (c) \)
\(\frac{\partial f}{\partial x} (a) < \frac{\partial f}{\partial x} (c) \)
3. Circle the equation for the quadric surface shown at right. (2 points)

1. \(x^2 - y^2 + z^2 = 1\)
2. \(-x^2 + y^2 + z^2 = 1\)
3. \(x^2 + y^2 - z^2 = -1\)
4. \(x - y^2 + z = 1\)
5. \(x^2 - y^2 - z^2 = 1\)

4. For each function \(f(x, y)\), label one graph that most closely matches the formula: (2 points each)

(A) \(f(x, y) = (-y)^2e^{-x^2-y^2}\) (B) \(f(x, y) = e^x \cos(y)\) (C) \(f(x, y) = \cos(x - y)\)
5. Let \(\mathbf{a} = (1, 1, 2), \mathbf{b} = (0, 3, 1) \). Check the boxes next to all (and only) the correct completions of the sentence. Mark all correct answer(s)! There may be more than one. (2 points)

“The quantity \(|\mathbf{a} \times \mathbf{b}|\)...

- ...is the volume of the parallelepiped spanned by \(\mathbf{a}, \mathbf{b}, \) and \(\mathbf{a} \times \mathbf{b} \)."
- ...is the area of the parallelogram spanned by \(\mathbf{a} \) and \(\mathbf{b} \)."
- ...is the area of the triangle with two sides \(\mathbf{a} \) and \(\mathbf{b} \)."
- ...is equal to \(|\mathbf{a}||\mathbf{b}|\cos(\theta)\)."
- ...is equal to \(|\mathbf{a}||\mathbf{b}|\sin(\theta)\)."
- ...is equal to \(|\mathbf{a} \cdot \mathbf{b}|\)."

6. Mark exactly one box corresponding to the correct ending to the sentence. (2 points)

“The limit \(\lim_{(x,y) \to (0,0)} \frac{x^3 y}{x^4 + y^4} \) fails to exist because...

- ...the numerator and denominator are both zero at (0,0)."
- ...the partial derivatives of \(\frac{x^3 y}{x^4 + y^4} \) at (0,0) do not exist."
- ...the limits as one approaches (0,0) along the lines \(x = 0 \) and \(y = 0 \) are different."
- ...the limits as one approaches (0,0) along the lines \(x = 0 \) and \(y = x \) are different."
- ...the limits as one approaches (0,0) along the paths \(y = x^2 \) and \(x = 0 \) are different."

7. Consider the function

\[
 f(x, y) = \begin{cases}
 x^2 + y^2 & \text{for } x < 0 \\
 x & \text{for } x \geq 0 \text{ and } (x, y) \neq (0,0) \\
 1 & \text{for } (x, y) = (0,0)
\end{cases}
\]

Check the box for the true statement (and check no other boxes). (2 points)

- \(f \) is continuous at (0,0).
- \(\lim_{(x,y) \to (0,0)} f(x, y) \) does not exist so \(f \) is discontinuous at (0,0).
- \(\lim_{(x,y) \to (0,0)} f(x, y) \) exists, but it is not equal to \(f(0,0) \), so \(f \) is discontinuous at (0,0).
8. Find a normal vector \(\mathbf{n} \) to the plane containing the points \((1,0,0), (0,2,0)\) and \((0,0,3)\). \(3\) points

\[\mathbf{n} = \langle \quad , \quad , \quad \rangle \]

9. Let \(f(x,y) \) be a function with values and derivatives in the table. Use linear approximation to estimate \(f(2.1,3.9) \). \(3\) points

<table>
<thead>
<tr>
<th>((x,y))</th>
<th>(f(x,y))</th>
<th>(\frac{\partial f}{\partial x}(x,y))</th>
<th>(\frac{\partial f}{\partial y}(x,y))</th>
<th>(\frac{\partial^2 f}{\partial x^2}(x,y))</th>
<th>(\frac{\partial^2 f}{\partial y^2}(x,y))</th>
<th>(\frac{\partial^2 f}{\partial x \partial y}(x,y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-1,3))</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>-7</td>
<td>-2</td>
</tr>
<tr>
<td>((2,1))</td>
<td>2</td>
<td>-1</td>
<td>-3</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>((2,4))</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>-1</td>
<td>-9</td>
<td>-5</td>
</tr>
<tr>
<td>((3,6))</td>
<td>1</td>
<td>-3</td>
<td>-5</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
</tr>
</tbody>
</table>

\(f(2.1,3.9) \approx \)

10. For which value of \(c \) is the volume of the parallelepiped determined by the vectors \(\langle 0,1,1 \rangle, \langle 2,3,5 \rangle, \) and \(\langle 1,1,c \rangle \) equal to zero? \(3\) points

\[c = \]

11. A plane \(P \) has equation \(2x + 3y - z = 5 \). A line \(L \) is parameterized by \(\mathbf{r}(t) = \langle 1,1,0 \rangle + t\langle 2, a-1, a-3 \rangle \) for some number \(a \). Find the value of \(a \) for which the line \(L \) is contained in the plane \(P \). \(2\) points

\[a = \]
12. For functions $f: \mathbb{R}^2 \to \mathbb{R}$ and $r(t) = \langle x(t), y(t) \rangle$, let $F(t) = f(r(t)) = f(x(t), y(t))$.

(a) Write the Chain Rule formula \((2 \text{ points})\):

$$F'(t) = \ldots$$

(b) Suppose $f(x, y) = x^3 + 2xy + y^2 + x + y$.

(i) Compute $\frac{\partial f}{\partial x}(1, 0)$ and $\frac{\partial f}{\partial y}(1, 0)$ \((3 \text{ points})\):

$$\frac{\partial f}{\partial x}(1, 0) = \ldots$$

$$\frac{\partial f}{\partial y}(1, 0) = \ldots$$

(ii) Give the equation for the tangent plane to $f(x, y)$ at the point $(1, 0, 2)$. \((2 \text{ points})\)

$$\ldots x + \ldots y + \ldots z = \ldots$$

(iii) Let $r(t) = \langle x(t), y(t) \rangle$ be the position of a particle at time t. Let $F(t) = f(r(t))$. Suppose $r(0) = \langle 1, 0 \rangle$. Give any possible nonzero velocity vector $r'(0) = \langle x'(0), y'(0) \rangle$ of the particle at time $t = 0$ which would imply that $F'(0) = 0$. \textbf{You must justify your answer.} \((2 \text{ points})\)

$$r'(0) = \langle \ldots , \ldots \rangle$$

13. Compute the distance from the point $(1, 3, 1)$ to the plane whose equation is $2x + y - z = 16$. \((3 \text{ points})\)

$$\text{distance} = \ldots$$
14. **Extra Credit Problem.** Let \(f(x, y) = \frac{x\sin^2(x)}{x^2 + y^2} \).

(a) Find a \(\delta > 0 \) such that if \(0 < |\langle x, y \rangle| < \delta \) then \(|f(x, y)| < \frac{1}{10} \). Justify your answer. (1 point)

(b) Find an expression for \(\delta > 0 \) in terms of \(\epsilon \) so that for every \(\epsilon > 0 \), if \(0 < |\langle x, y \rangle| < \delta \) then \(|f(x, y)| < \epsilon \). Justify your answer. (1 point)

Scratch work may go below and on the back of this sheet.
Scratch work may go below.