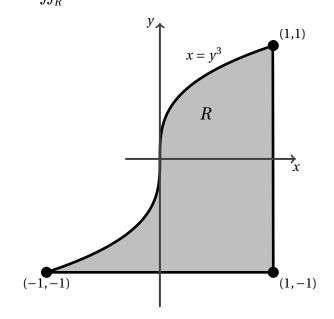
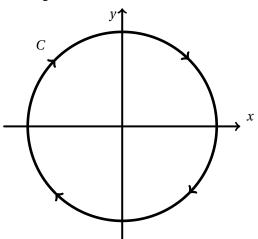
1. Let *R* denote the shaded region pictured below right. Compute $\iint_R 14x \, dA$. (4 points)



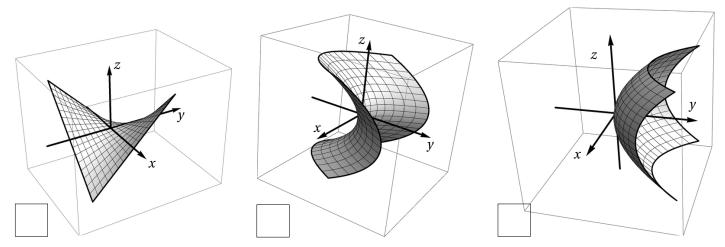
$\iint_R 14x dA =$

2. Let *C* be the circle of radius 1 centered at the origin and oriented as shown below right. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(x, y) = (e^x y^2 - x^2 y, 2e^x y + xy^2)$ by any valid method. (3 points)



$$\int_C \mathbf{F} \cdot d\mathbf{r} =$$

3. Let *S* be the surface parameterized by $\mathbf{r}(u, v) = \langle u, u^2 - v^2, v \rangle$ for $-1 \le u \le 1$ and $-1 \le v \le 1$. Mark the picture of *S* below. (2 points)



- **4.** Consider the surface *S* parameterized by $\mathbf{r}(u, v) = (uv, v, u^2)$ with $-1 \le u \le 1$ and $0 \le v \le 1$.
 - (a) (2 points) Choose the integrand that correctly describes the integral over *S* of the function *y*, and circle your answer. Make sure to show work that justifies your choice.

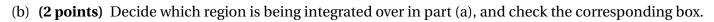
$$\iint_{S} y \, dS = \int_{0}^{1} \int_{-1}^{1} \frac{v\sqrt{4u^{2} + 4u^{4} + v^{2}}}{u\sqrt{4u^{2} + 4u^{4} + v^{2}}} \frac{v\sqrt{u^{2}v^{2} + v^{2} + u^{4}}}{v\sqrt{4u^{2} + 4u^{4} + v}} du \, dv$$

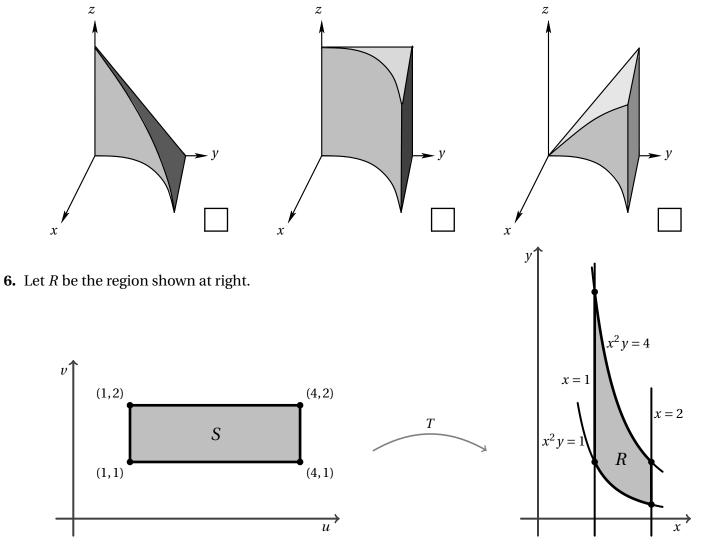
(b) (2 points) Circle the true statement:

$$\iint_{S} y \, dS < \iint_{S} y^2 \, dS \qquad \qquad \iint_{S} y \, dS = \iint_{S} y^2 \, dS \qquad \qquad \iint_{S} y \, dS > \iint_{S} y^2 \, dS$$

5. (a) **(2 points)** Calculate $\int_0^1 \int_0^{y^2} \int_0^y 2 \, dz \, dx \, dy$.

$$\int_0^1 \int_0^{y^2} \int_0^y 2\,dz\,dx\,dy =$$





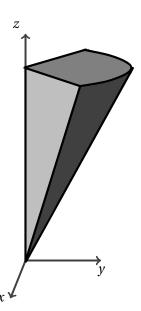
Find a transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ taking $S = [1, 4] \times [1, 2]$ to *R*. Justify your answer. (3 points)

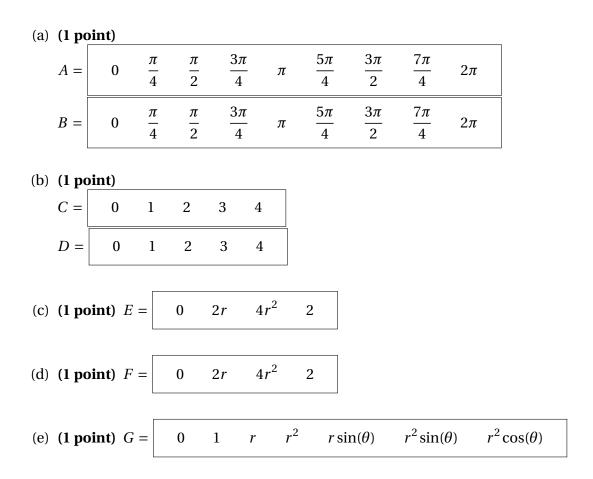
$$T(u,v) = \left\langle \qquad , \qquad \right\rangle$$

7. Let *R* be the solid region in \mathbb{R}^3 shown at the right. Specifically, *R* is bounded by the cone $z^2 = 4x^2 + 4y^2$, the planes x + y = 0, x - y = 0, z = 2, and has $y, z \ge 0$. The volume of *R* is calculated in cylindrical coordinates by the integral

$$\int_{A}^{B} \int_{C}^{D} \int_{E}^{F} G dz dr d\theta.$$

Determine the quantities A, B, C, D, E, F, G and circle the correct answers.





8. Use spherical coordinates to SET UP, but not calculate, $\iiint_B z \, dV$, where *B* is the part of the unit ball in \mathbb{R}^3 , $x^2 + y^2 + z^2 \le 1$, for which $x \le 0$. (4 points)

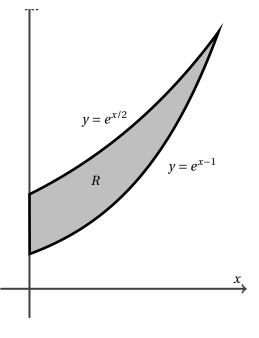
9. Let *R* be the region shown at right and consider the transformation

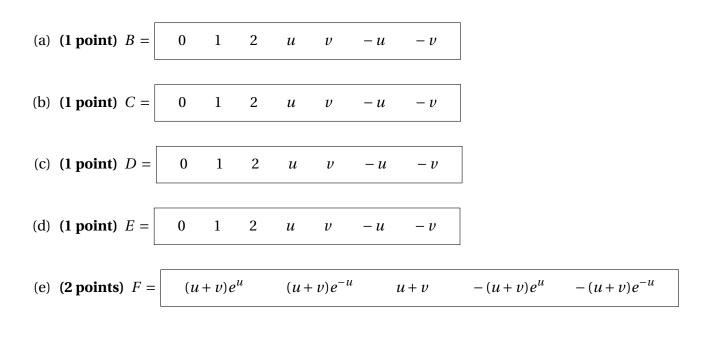
$$T(u,v) = \left(u + v, e^u\right)$$

Using the transformation to change coordinates, determine the quantities *B*, *C*, *D*, *E*, *F* in the expression

$$\iint_R \frac{x}{y} \, dA = \int_B^C \int_D^E F \, du \, dv$$

and circle the correct answer.



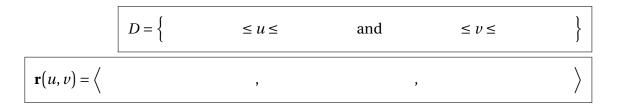


MORE PROBLEMS ON THE NEXT PAGE!

- **10.** For each surface *S* in parts (a) and (b), give a parameterization $\mathbf{r}: D \to S$. Be sure to explicitly specify the domain *D* and call your parameters *u* and *v*.
 - (a) The part of the surface in \mathbb{R}^3 defined by $y = z^2 x^2$ with $-1 \le x \le 1$ and $0 \le z \le 2$. (3 points)

$$D = \left\{ \leq u \leq \text{ and } \leq v \leq \right\}$$
$$\mathbf{r}(u, v) = \left\langle , , , \right\rangle$$

(b) The portion of the sphere $x^2 + y^2 + z^2 = 1$ in \mathbb{R}^3 where $z \le 0$. (3 points)



(c) The portion of the surface in \mathbb{R}^3 defined by $z^2 - y^2 + 1 = 0$ with $y \ge 0$ that lies inside the cylinder $x^2 + z^2 = 1$. (3 points)

