Initial Value, Boundary Value, and Eigenvalue Problems

 

 

Example:  Find the solution for the following boundary value problem.

 

                        d2y/dx2  +  6 dy/dx  +  13 y  =  0 

 

                         y(0) = 0,   y’(π) = 1           (boundary values)

 

 

   You can write this d.e.  in operator notation  (D2  +  6D + 13) y   =   0

 

 Assume   y = Aerx   for the complementary solution.

 

So   d2y/dx2  =  A r2 erx ,   dy/dx  =  A r erx ,   and  y = Aerx

 

Substitute into the d.e. yields

 

                    Aerx ( r2  +  6r  +  13 )  =  0

 

  Since  Aerx    0,  the characteristic equation for  r  becomes:

 

                    r2  +  6r  +  13   =  0 ,  

 

with roots       -3 ± 2i        using the quadratic formula.

 

 

The complementary solution,    yc ,  is:

 

            yc (x)  =  Fe(-3 + 2i)x +  Ge(-3 - 2i)x

 

where   F  and  G  are undetermined constants  (need two initial conditions)

 

which can be expressed as follows,   (equivalent complementary solution)

 

        y(x)  =   yc (x)  = e-3x ( C1 sin 2x+ C2 cos 2x )    

 

 

 Apply the initial values to find  C1 and C2.   y(0) = 0  gives  0  =  C2

 

So   y’(x)  =  -3 e-3x ( C1 sin 2x )  + 2 e-3x ( C1 cos 2x )

 

and  y’(π)  =  1  =  2 e-3π C1      so    C1  =  1/2 e

 

 

The resulting solution for the boundary value problem is   y(x)  =  (1/2) e3x sin 2x

 

 

Click here to continue with discussion.

 




Copyright © 2017 Richard C. Coddington

All rights reserved.