Evaluation of Improper Integrals using the Comparison Test

 

 

                                                                            

Example 1:      I  =   ∫( [ x / (x3 + 1)]dx      

                                 0                               

Note that the denominator dominates for large values of x.  So it appears that the improper

integral probably converges.

 

Here  g(x) = x / (x3 + 1).  So pick an  f(x) that is larger than g(x).  Then if

 

                         ∫ f(x) dx  converges so will  ∫ g(x) dx .

 

                                                  1                                                                          

      I  =   ∫ [ x / (x3 + 1)]dx    =    ∫( [ x / (x3 + 1)]dx  +    ∫( [ x / (x3 + 1)]dx

              0                                     0                                  1                        

 

Note the first integral is definite and the second one is improper.

 

          Pick  f(x) =  1 / x2   and  g(x)  = x / (x3 + 1)  .

 

Note:     1 / x2   >   x (x3 + 1)  for large values of x.  So  f(x)    g(x)  .

 

                                                                     

                 Ic  =     1/ x2   dx      

                          1                              

                                               t                                                               

                 Ic  =   lim  ( ˗ 1/x) |     =  1    result:  integral converges

                         t →∞             1

 

and since  f(x)    g(x) for large x,  the original integral converges.

 

  

 

                                                                           

Example 2:      I  =   ∫( [ 1 / (x – e-x)]dx      here    f(x) = 1 / (x – e-x)]

                                 0                              

 

Will this original integral converge or diverge?  Note that the term  e-x dominates in

the denominator.  So it appears that the integral probably diverges.   i.e. 

 

Pick  g(x)  =  1/x       Note that   f(x) =  1 / (x – e-x)  >  1/x    so  f(x)  >  g(x)

 

                                                                            t      

                          I  =   ∫( [ 1 /x]dx   =      lim  ln x |       =     - ln 1  = 

                                 1                          t →∞        1

    

Since   ∫ g(x)  diverges (smaller area),  the larger area  ∫ f(x) dx will also diverge

 

 

 



Copyright © 2017 Richard C. Coddington

All rights reserved.