Green’s Theorem

 

 

Example:  Use Green's Theorem to Evaluate  I  =       y2 dx + xy dy     

                                            C          

 

around the closed curve, C, bounding the region, R,  where R is the ellipse

defined by   (x/3)2 + (y/2)2  =  1 .

 

 

 

Strategy:  Apply the standard form of Green’s Theorem to evaluate the line integral

 

  I  =     ∫ P dx + Q dy  =       [∂Q/∂x  -  ∂P/∂y] dA  

            C                           R

 

 

Here  P(x,y)  =  y2 ,  Q(x,y)  =  xy  and the closed curve,  C, is the

 

Now    ∂Q/∂x  =  y  and    ∂P/∂y  =  2y    so  ∂Q/∂x  -  ∂P/∂y  =  - y

 

                                                                           y = 2       x = 3√[1-(y/2)2]

Thus the area integral becomes    -y dA  =  -2              y dx dy 

                                                     R                   y = -2      x = 0 

 

                     y = 2             x = 3√[1-(y/2)2]             y = 2

    I  =       -2           y    x|                      dy    =   - 6   ∫ y √[1-(y/2)2] dy

                    y = -2              x = 0                            y = -2

 

   let  u = 1- (y/2)2  ,  du  = - (1/2) y dy,    y dy  =  - 2 du

                                                            2

    I  =   12 ∫ √u du  =  8 [1-(y/2)2  ]3/2 |  =  0        (result)

                                                           -2

 

Note this result makes sense since    -y dA  should equal zero when encompassing

                                                          R

the region, R, by going completing around the ellipse (the areas on both sides of

the y-axis cancel out).

 

 

Example:  Evaluate the line integral:    ∫ (7y – esinx)dx + (15x – sin(y3 + 8y) dy  

                                                                  C

 

where  C  is a circle of radius 3 centered at (5, -7).  Note that this is a very difficult

integral to evaluate.  So try simplifying the calculation using the RHS of Green’s Theorem.

 

∂Q/∂x  = 15,  ∂P/∂y = 7 ;  ∫ ∫[∂Q/∂x  -  ∂P/∂y] dA  =   8 dA  =  8 (π 32 )  = 72π  (result)

                                          R                                         R

 

Note the simplification that results in using Green’s Theorem.

 

Click here for more examples using Green’s Theorem.

 




Copyright © 2017 Richard C. Coddington

All rights reserved.