Integrals Involving Rational Functions

 

 

Example 1:  Partial Fractions with Distinct Linear Factors

 

Note:  P(x)  =  1  and  Q(x)  =  x2  + x  - 2      So long division is unnecessary.

 

 I   =   dx / (x2  + x  - 2)

 

    1/ (x2  + x  - 2)  =   1/(x – 1)(x + 2)  =  A/(x – 1) + B/(x + 2)

 

The terms  A/(x – 1) and  B/(x + 2) are the “partial fractions”

 

Next put them under a common denominator.  The result is:

 

      1/ (x2  + x  - 2)  =   [A(x  + 2) + B(x – 1)] / (x – 1)(x + 2) 

 

 and equate numerators.

 

          1   =   A(x + 2)  +  B(x – 1)  =  x(A + B) + (2A – B)

 

Solve for A and B.   There are two methods to obtain the solution.

 

 

 

Method 1:  Equate terms of equal powers of  x  on both sides of the equal sign.

The result of this yields two equations in the unknowns  A and B as follows:

 

     2A – B = 1   and  A + B = 0          Solve for A and B.   A  =  1/3,  B  =  -1/3

 

 

 

Method 2:  Both sides of the equation  1   =   A(x + 2)  +  B(x – 1)  

must hold for any value of  x.  So pick values of   x  that enable you to solve

most easily for A and B.

 

For example pick x = 1, which gets rid of B.  Then you get 1 = 3A.  so A = 1/3.

Next pick x = -2 which gets rid of A.  Then  1 = -3B  and  B = - 1/3.

Note: This method may be quicker and easier. 

 

 So   I  =     (1/3) ∫ dx / (x – 1)  - (1/3) ∫ dx /(x + 2)

 

and   I  =  (1/3) ln| x – 1|  -  (1/3) ln|x + 2|  +  C     (result)

 

 

Click here for another example.

 



Copyright © 2017 Richard C. Coddington

All rights reserved.