The Multivariable Chain Rule                                          

 

 

Example:     Let   w   =   f( r )   where    r  =  r( x, y, z)  =    √ [x2 + y2 + z2 ]

 

Here    w  is the dependent variable,  r  is the intermediate variable,   and

            x, y, and z  are the independent variables

 

Show that       2w/ ∂x2  +   2w/ ∂y2  +    2w/ ∂z2  =  d2w/ dr2  +    [2/r][dw/ dr]       

 

 

 

 

The tree structure for this problem is as follows:

          

Start with the first derivative.

 

∂w/ ∂x   =   [dw/dr] [∂r/ ∂x]   =   dw/dr (1/2) [x2 + y2 + z2 ]-1/2  [2x]

 

So    ∂w/ ∂x   =   [ x/ √ [x2 + y2 + z2 ]  dw/dr  =  (x/r)  dw/dr

 

Similarly,  ∂w/ ∂y   =  [ y/  r ]  dw/dr     and   ∂w/ ∂z   =  [ z/ r ]  dw/dr

 

Next find the second derivatives.   This is the hard part of the calculation.  The second

derivative is just the derivative of the first derivative.  Use the result for  ∂w/ ∂x   .

 

  2w/ ∂x2   =  ∂/∂x [∂w/ ∂x]   =   ∂/∂x { dw/dr  [∂r/ ∂x]  }

 

Next use the product rule to obtain  

 

  2w/ ∂x2   =  ∂/∂x{dw/dr} [∂r/ ∂x]  + dw/dr   ∂/∂x {∂r/ ∂x}

 

Next interchange the order of integration for the first term on rhs which gives

 

    2w/ ∂x2   =  d/dr{∂w/ ∂x } [∂r/ ∂x]  + dw/dr   ∂/∂x {∂r/ ∂x}

 

Now   ∂w/ ∂x   =   [dw/dr] [∂r/ ∂x]  

 

Perform the differentiations on the rhs (right hand side) gives

 

2w/ ∂x2   =  d2w/dr2 [∂r/ ∂x]2  + dw/dr  [∂2r/ ∂x2]

 

Click here to continue with this example.

 




Copyright © 2017 Richard C. Coddington

All rights reserved.