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Abstract: The benefi ts of particle size reduction and mechanical densifi cation of biomass feedstock 
for storage, transportation, and handling must be assessed in relation to the systemic costs and 
energy consumption incurred due to these operations. The goal of this work was to determine the 
optimal levels of size reduction and densifi cation through a combination of modeling and experimen-
tal studies. Size reduction and densifi cation data for Miscanthus and switchgrass were generated 
using a two-stage grinding process and the energy requirement and bulk densities for the particle 
sizes between 1 mm and 25.4 mm were determined. Increase in bulk density through compression 
by a pressure of 1.2 MPa was also measured. These data were used within BioFeed, a system-level 
optimization model, to simulate scenarios capturing the possibilities of performing size reduction 
and densifi cation at various stages of the supply chain. Simulation results assuming size reduction at 
farms showed that the optimal particle size range for both Miscanthus and switchgrass was 4–6 mm, 
with the optimal costs of $54.65 Mg–1 and $60.77 Mg–1 for Miscanthus and switchgrass, respectively. 
Higher hammer mill throughput and lower storage costs strongly impacted the total costs for different 
particle sizes. Size reduction and densifi cation of biomass at the county-specifi c centralized storage 
and pre-processing facilities could reduce the costs by as much as $6.34 Mg–1 for Miscanthus and 
$20.13 Mg–1 for switchgrass over the base case. These differences provided the upper bound on the 
investments that could be made to set-up and operate such systems. © 2014 Society of Chemical 
Industry and John Wiley & Sons, Ltd

Supporting information may be found in the online version of this article.

Keywords: biomass feedstock; size reduction; densifi cation; BioFeed; hammer milling; Miscanthus; 
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Size reduction and densifi cation 
experiments

Miscanthus and switchgrass were established in 2008 at 
the Energy Farm of the University of Illinois at Urbana-
Champaign (40.1096ºN, 88.2042 ºW). Th e biomass was 
harvested using a mower-conditioner and baled using a 
square baler in the early spring of 2009 and 2010.6 Both 
crops were left  standing in the fi eld during winter before 
harvesting. Miscanthus and switchgrass bales were stored 
for one year in a roofed open-air storage building, and 
selected randomly for this study. Miscanthus bales con-
sisted of approximately 70–80% stem material and 20–30% 
sheath and leaf material, whereas switchgrass bales con-
sisted of 55–70% stem material and 30–45% sheath and 
leaf material. Moisture content of Miscanthus and switch-
grass samples ranged from 7% w/w to 20% w/w.

Size reduction experiments

Th is work used data generated for the lab-scale size 
reduction experiments of Miscanthus and switchgrass, 
which were carried out following a two-stage mechani-
cal chopping process, i.e. coarse and fi ne size reduction. 
A commercial scale David Bradley hammer mill was 
used (5152W, Westinghouse Electric Corporation, Sears 
Roebuck and Co., Hoff man Estates, IL, USA) to grind 3 
kg of unbaled Miscanthus (approximately 0.3~1.2 m long) 
and switchgrass (about 0.16~0.6 m long) through the 6.35-
mm or 12.7-mm circular-opening screens. Th is step was 
termed ‘coarse size reduction’. Th e second step was to fur-
ther reduce the coarse biomass particles into fi ner particles 
with a Retsch SM2000 knife mill. For the knife mill, the 
aperture sizes of the milling screen included 1-mm trap-
ezoidal, and 2-, 4-, 6-, and 8-mm square openings.6 Each 
treatment was repeated three times.

Th e energy consumption of the milling machine was 
measured using a Yokogawa CW120/121 clamp-on power 
meter (IM CW120-E, Yokogawa M&C Corporation, 
Newnan, GA, USA). To determine the magnitude of fl uc-
tuations in current over time caused by varying mechani-
cal friction, idle power consumption was measured for 
each machine during four repetitions. A 95% confi dence 
level with a normal distribution was used to determine 
whether the power consumption surge resulted from mill-
ing biomass materials or from current fl uctuation caused 
by mechanical friction. Th e real-time throughputs of the 
milling machines were recorded using a scale and LP7510 
weighing indicator (Indiana Scale Company Inc., Terre 
Haute, IN, USA). Bulk densities of the ground biomass 

Introduction

C
ost-eff ective and effi  cient production and provision 
of biomass feedstock is essential for the success of the 
second-generation biofuel sector. It is expected that 

agricultural feedstocks such as dedicated energy grasses and 
agricultural residue will play an important role in meeting 
the targeted goals.1,2 However, the production and provi-
sion of these feedstocks such as Miscanthus, switchgrass, 
corn stover, and sweet sorghum are highly ineffi  cient due 
to their low energy and bulk densities.3 Th ese low densities 
lead to large storage, transportation, and handling require-
ments, thereby adding to the overall cost of the feedstock 
at the refi nery gate. Size reduction and densifi cation of bio-
mass feedstock can overcome these challenges to a certain 
extent.4,5 Chopping or grinding to smaller particle sizes 
has been shown to increase the bulk densities,6 and densi-
fi cation will further increase the density. Size reduction is 
also benefi cial for biomass processing as a smaller particle 
size leads to enhanced conversion effi  ciency, possibly due 
to greater surface area.7 However, the costs and energy 
consumption of size reduction and densifi cation can be 
substantial, and those costs must also be considered in con-
junction with the benefi ts in order to make the appropriate 
decisions. Th is calls for a systems-based approach.

In this work, we have used the BioFeed optimization 
model to perform this analysis.8,9 BioFeed is a system-level 
model that incorporates important feedstock production 
and provision activities and determines the optimal sys-
tem design and management strategies. Th is work used 
BioFeed to study the systemic impacts of size reduction 
and densifi cation on Miscanthus and switchgrass produc-
tion systems. Lack of reliable experimental data had hin-
dered such an analysis in the past. We have, therefore, also 
conducted size reduction and densifi cation experiments to 
generate the required data to use within the BioFeed mod-
eling framework. Th is study, therefore, represents a unique 
integration of modeling and experimentation to explore 
the complexities of the feedstock production systems. Th e 
objective was to quantify the trade-off s associated with 
size reduction and densifi cation, to determine their opti-
mal levels, and to provide recommendations to further 
improve the system performance. 

Th e paper is arranged as follows: Th e next section 
describes the details of the size reduction and densifi cation 
experiments conducted in this work, while the BioFeed 
model along with the scenarios modeled are presented in 
the subsequent section. Th e experimental and simulation 
results are then discussed, followed by the main conclu-
sions and recommendations. 
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lic cylinder pressure at a rate of 100 samples per second 
using a low-cost USB data acquisition module (NI 6009, 
National Instruments Austin, TX, USA). Aft er completion 
of the test, the same MATLAB® program fi tted pressure-
displacement curves and calculated the densifi cation 
energy consumption during the test. Th is allowed the 
calculation of the variation in bulk density aft er densifi ca-
tion and the specifi c energy of densifi cation as a function 
of particle size. Th is work did not consider rebounding 
eff ects of biomass aft er removal of pressure.

BioFeed model 

Th e BioFeed model has been developed by this group at 
the Energy Biosciences Institute, University of Illinois 
at Urbana-Champaign. Th e main components of the 
BioFeed model are various feedstock production and 
provision operations before its delivery to the biorefi nery 
(Fig. 2).8,9,13 BioFeed models a scenario where many farms 
are producing biomass feedstock for one or more regional 
biorefi neries, and models the important operations along 
this value chain. Th e model assumes that standard crop-
establishment techniques will be used that will result in 
a mature, harvestable stand of biomass on each farm. For 
each farm under consideration, the production activities 
include harvesting, raking, post-harvest pre-processing, 
in-fi eld transport, handling, on-farm storage, and ensilage. 
Th e packed biomass can either be directly transported 
to the biorefi nery, or stored in one of the three storage 
options: on-farm open storage, on-farm covered storage, 
and centralized (satellite) storage. Th e satellite storage 
facilities are shared by multiple farms in the region and 
can include mechanical pre-processing of biomass, such 
as size reduction and densifi cation.14 Th e pre-processing 
can be performed at the input or the output of the stor-
age facilities, which has an impact on the storage volume 
requirements. Th e transportation activities are carried out 
using a fl eet of trucks that is independently owned. Th e 
impact of regional weather on the harvesting activities is 
modeled by incorporating the probability of working day 
(pwd) parameter in the model equations.15 

Each compartment is modeled using a set of linear alge-
braic equations that refl ect the mass balance as well as 
the equipment capacity and availability constraints. Th e 
decision variables include equipment selection and their 
operating schedules, biomass distribution among various 
alternatives, on-farm storage method selection and sizing, 
centralized storage selection and sizing, transportation 
fl eet size selection and utilization of the fl eet (logistics), 
number of pre-processors at the satellite storage facilities 

were measured  following the ASAE standard S269.4 DEC 
1991 (R2007).10 Each measurement was repeated three 
times and the variation in bulk density and specifi c energy 
of size reduction with the particle size was determined. It 
is important to note that the diff erent particle sizes consid-
ered here are in fact the aperture size of the screen of the 
milling machine, and data such as bulk density for a spe-
cifi c particle size pertain to the biomass ground through 
that particular screen.

Densifi cation experiments

Biomass densifi cation experiments were performed at the 
mini-bale scale (Fig. 1).11 Th e dimensions of the mini-bale 
chamber, custom built in our laboratory at the University 
of Illinois, were 0.15 × 0.15 × 0.203 m (0.00456 m3). 
Th e container was fi lled with up to 0.4–0.5 kg samples. 
Subsequently, the material was compressed to a pressure of 
5.5 MPa, which translated into 1.2 MPa pressure applied 
to the biomass. Th is pressure level was approximately 1.5 
times the working pressure (0.5~1 MPa) of a New Holland 
large square baler.12 A hydraulic compressor was built to 
measure specifi c energy consumption of biomass densi-
fi cation. A MATLAB® program was developed and used 
to combine data acquisition and analysis. Th is program 
measured the displacement of the piston and the hydrau-

Figure 1. Densifi cation apparatus consisting of a  hydraulic 
cylinder and a mini-bale densifi cation chamber.11 The 
apparatus was instrumented to read the hydraulic cylinder 
pressure and displacement using an NI 6009 USB data 
acquisition unit. LabVIEW® was used for testing, while a 
MATLAB® program performed data acquisition and analysis 
during the experiments.
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manner.17 Th e individual MILP problems generated aft er 
the implementation of the DDC approach are solved using 
the CPLEX® solver. Th e total cost calculated by the model 
and reported later as part of results is the combined cost of 
all operations modeled by BioFeed. Th is includes harvest-
ing, raking, storage, pre-processing, infi eld transportation, 
loading and unloading, and long-distance transportation. 
Th e farmland cost as well as crop establishment, fertiliza-
tion, and irrigation costs are not considered.

Model scenario basics

Th e simulation studies in this work modeled Miscanthus 
and switchgrass production in southern Illinois. Th e 
scenarios for these two feedstocks were modeled inde-
pendently to compare their relative costs, as we did not 
consider simultaneous production of the two feedstocks 
for a single biorefi nery. Th e scenarios included a collection 
area of 17 400 km2 distributed among 13 counties (map 
of the collection region shown in supporting information, 
Fig. S1). Th e actual energy crop farm area was about 670 
km2 divided over 284 farms. Th e farm sizes were based on 
the typical farm size distribution in Illinois.18 A biorefi n-
ery was assumed to exist at Nashville, IL, and its capacity 
was optimized by the model. Th e transportation distances 
between farms, satellite storage facilities, and the biore-
fi nery were calculated using Google Maps® (http://maps.
google.com/). Th e peak dry matter yields of Miscanthus 

if pre-processing is performed at those facilities, and the 
biorefi nery capacity. All the decisions are simultaneously 
optimized for each farm as well as the rest of the produc-
tion and provision system, resulting in a mixed integer 
linear programming (MILP) model. Th e simulation period 
consists of one year, which is divided into a harvesting 
and non-harvesting period. Biomass harvested during the 
harvesting period, which typically lasts for 2–4 months, 
must be stored and supplied to the biorefi nery during both 
the harvesting and non-harvesting periods. Th e smallest 
simulation time step is one day, and the user can specify 
a larger time step consisting of multiple days. Although a 
smaller time step is desired for greater accuracy, reducing 
the time steps increases the solution time signifi cantly.

Each operation is associated with fi xed as well as 
 operating costs. Th e operating costs include labor, fuel 
and lube, and repairs. Th e goal of the model is to optimize 
all decisions simultaneously so that the best system-level 
confi guration can be determined. Th e objective function, 
therefore, is the maximization of the total system profi t by 
assuming a fi xed biorefi nery gate price in $ Mg–1. Th e divi-
sion of the total profi t among various stakeholders is not 
considered. It is possible to specify the type and number 
of equipment a priori to build specifi c scenarios. Th e 
model has been developed in GAMS (General Algebraic 
Modeling System).16 A novel computational scheme called 
DDC (Decomposition and Distributed Computing) is used 
to solve the MILP problem in a computationally effi  cient 

Figure 2. BioFeed model: Each compartment is modeled using a set of algebraic 
equations that constitute the constraints in the optimization model.13
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optimized, were simulated where the particle size was 
specifi ed to 1, 2, 4, 6, 8, 12.7, 16, and 25.4 mm. In each sce-
nario, each farm used a hammer mill to achieve the speci-
fi ed particle size. Th is ensured that the biorefi nery received 
a uniform biomass form. 

Size reduction and densifi cation 
scenarios

Th e second set of scenarios considered size reduction as 
well as densifi cation of biomass feedstock. Pelletization 
or briquetting are densifi cation options that have been 
studied in the past. However, pellets and briquettes 
need to be disintegrated into ground or powdered form 
before processing. Cost of pelletization is also signifi -
cant. Th erefore, we explored temporary densifi cation 
options during the transportation of biomass. Here, we 
envisioned a loading mechanism and a truck similar 
to the garbage pick-up truck that compresses material 
temporarily. Th e truck would generate enough pressure 
to achieve the necessary densifi cation and maintain it 
during the transportation so that the volume and weight 
limits of the truck are achieved simultaneously. Th is 
will lead to optimal utilization of the individual truck. 
Compression pressure will be removed aft er transporta-
tion, and biomass will return close to its original bulk 
density. Such densifi cation can be modeled during all 
stage of transportation. However, densifi cation during 
transportation between farms and biorefi nery or stor-
age facilities would require the specialized equipment to 

and switchgrass on September 1 were 28 Mg ha–1 and 
12 Mg ha–1, respectively, and the biomass loss rates for 
non-harvested, standing crop of Miscanthus and switch-
grass were 0.07 Mg d–1 ha–1 and 0.01 Mg d–1 ha–1, respec-
tively.19 Th e harvesting season for Miscanthus was January 
to April (four months) during which time the harvestable 
yield dropped linearly from 20 Mg ha–1 to 11 Mg ha–1. Th e 
harvesting season for switchgrass was between September 
and December (four months) during which the harvest-
able yield dropped linearly from 12 Mg ha–1 to 7.2 Mg ha–1. 
We assumed that the moisture content for both crops at 
peak yield on September 1 was 60% and reduced linearly 
thereaft er at the rate of 0.3% d–1 to a minimum moisture 
content of 15%. Th e short-term variations in the moisture 
content due to weather variability were ignored, but could 
be included in future model extensions. Th e equipment 
performance data for Miscanthus reported in European 
studies20,21 in combination with the ASABE machinery 
standards22,23 were used in this work. Th e equipment 
performance data for switchgrass production were based 
on Shastri et  al.8 and Kumar and Sokhansanj.24 Th e data 
for typical farm equipment such as loaders, fork lift s, and 
trailers that were not crop-specifi c were adopted from 
Sokhansanj.25 Th e biomass storage data were from Shastri 
et  al.9 Th e equipment data tables are provided in the sup-
porting information (Tables S1–S12). Th e model assumed 
that on-farm open storage was on a gravel pad, and the 
satellite storage was in the form of an enclosed facility 
without ventilation. Th e type of on-farm covered storage 
depended on the pre-processing performed on the farm 
and is mentioned while discussing each scenario. 

Size reduction scenarios: Base case

Various scenarios were studied to quantify the impact of 
size reduction and densifi cation to diff erent levels. Th e 
base case set of scenarios (Fig. 3) assumed that the pre-
processing (size reduction) of biomass was carried out 
on-farm aft er harvesting and moving it to the edge of the 
farm. Th e ground biomass was then stored on-farm or at 
the satellite storage facilities, and this distribution was 
optimized by the BioFeed model. Only covered storage 
with three walls was considered for on-farm storage since 
open storage of ground biomass could lead to substantial 
losses due to weather events such as rain and high wind. 
Th e satellite storage facility was assumed to be located at 
Okawville, IL, which was about 20 km from the biorefi n-
ery. Th is led to an average distance of 70 km between the 
farms and the storage location, as well as between farms 
and the biorefi nery. Eight scenarios, each individually 

Figure 3. Base case size reduction scenario for BioFeed; 
on-farm size reduction was performed on each farm to 
specifi c particle sizes using a hammer mill; ground biomass 
was stored on-farm or transported to storage or  biorefi nery 
without any densifi cation; ground biomass storage was 
optimized between on-farm covered storage and the 
 satellite storage facility.
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CSPs and biorefi nery. Since the total amount of biomass 
handled at each CSPs would be much higher than at indi-
vidual farms, the resulting economy of scale was expected 
make such installations cost-eff ective. 

It must be emphasized that the optimization problem 
did not consider the cost of densifi cation. Th erefore, the 
results presented later, subject to this assumption, must be 
interpreted carefully. Th is is discussed later while describ-
ing the results. 

It is also important to note that according to valid vol-
ume (width × height × length: 2.3×2.7×12.2 m~16.2 m) of 
the widely-used commercial transport vehicles in North 
America and legal load standard (19.7 Mg per truck) of the 
US Department of Transportation for highway, the upper-
limit of biomass bulk density is about 220–250 kg m–3 for 
road transportation with a fl atbed trailer or wagon. Th e 
bale bulk density of 220–250 kg m–3 has been achieved 
in-fi eld with a regular baling machine and average baling 
speed by chopping the biomass into 15–20-cm long pieces 
at the Energy Farm of University of Illinois at Urbana-
Champaign. Th e data used for model simulations matched 
these guidelines. Th e BioFeed model accounts for volume 
as well as weight constraints of the transportation equip-
ment while determining the number of trucks. 

Th e scenarios considered here may also have an indi-
rect implication on the reliability of year-round supply 
of biomass to the biorefi nery. Size reduction reduces the 
storage volume requirement. Moreover, densifi cation 
such as pelletization also stabilizes biomass to a certain 
extent. Th is can allow storage of biomass beyond one 
year, and therefore provide a buff er against unexpected 
supply disturbances. Similarly, having more biomass at 
a central storage facility, as in the second scenario, will 
lead to more reliable supply since more effi  cient transport 
arrangements can be made to minimize the infl uence 
of disturbances. However, these aspects are not directly 
quantifi ed in this study. 

Sensitivity analysis

Th e experimental data along with the equipment data were 
adapted to develop relevant scenarios for our analysis. 
Th erefore, we conducted a sensitivity analysis with respect 
to various attributes of the hammer mill to quantify their 
impact on the total cost and optimal particle size. Th e 
parameters considered were throughput of the hammer 
mill, cost of the hammer mill, and output bulk density of 
the biomass ground in a hammer mill. Since the impact of 
higher throughput on the other attributes of the hammer 
mill was not known, we assumed that the hammer mill 

be set-up on every farm and the custom designed trucks 
to be used extensively. Th is is not expected to be cost-
eff ective. Instead, the installation of such equipment 
at the satellite storage facilities would be a more cost-
eff ective option.5,26 Th erefore, we modeled a size reduc-
tion and densifi cation scenario where the supply system 
consisted of centralized storage and pre-processing 
(CSP) facilities in each county (Fig. 4).14 Farmers baled 
the energy crops and transported those to the CSP of 
that county. Th is reduced the average distance between 
farms and the storage locations to about 19 km, while 
the average distance between the storage locations and 
the biorefi nery was about 67 km. On-farm storage of 
bales could be open on gravel pad or covered with a shed 
without any walls. At the CSPs, size reduction could be 
performed either at the input before storage or at the 
output before transportation to the biorefi nery, and the 
storage requirements changed accordingly. Size reduc-
tion at both input and output was not modeled. Storage 
at CSPs was without densifi cation. Ground biomass could 
be transported to the biorefi nery in uncompressed as well 
as compressed form. Th us, four scenarios with combina-
tion of two  locations of size reduction at CSPs and option 
of  densifi cation during transportation were modeled. 
Th e compression pressure was assumed to be 1.2 MPa so 
as to use the experimental results previously presented. 
Th e advantage of such an arrangement was that regular 
fl at-bed trailers could be used for transportation between 
farms and CSPs. Specialized loading and transport 
equipment would be needed only for transport between 

Figure 4. Size reduction and densifi cation scenarios 
modeled using BioFeed; size reduction was performed 
at the input or output of the centralized storage and 
 pre-processing (CSP) facilities in each county and ground 
biomass could be compressed during transportation by 
using  special loading and transport equipment.



© 2014 Society of Chemical Industry and John Wiley & Sons, Ltd  |  Biofuels, Bioprod. Bioref. (2014); DOI: 10.1002/bbb

Modeling and Analysis: Optimal size reduction and densification of biomass feedstock YN Shastri et al.

Details of size reduction and densifi cation experiments 
and results have been reported by Miao et  al.6,11 Th e power 
laws between specifi c energy consumption and particle 
size and between bulk density of output particle and 

attributes such as cost, effi  ciency, and power requirement 
did not change with the throughput. In addition, we also 
conducted a sensitivity analysis with respect to the stor-
age cost of ground biomass. Th e storage cost calculated by 
the model included the cost of building the infrastructure 
(Table S12 from supporting information) and the land 
cost. For on-farm storage, the cash rent value of $0.0395 
m–2 ($160 per acre) for Illinois was used.27 In contrast, 
land was assumed to be purchased to build a central-
ized storage facility, and hence the land value of $1.1 m–2 
for Illinois was used.27 We assumed that the storage cost 
could be reduced by purchasing less expensive land or 
cost-effi  cient structures.

Additional scenarios for coarse size reduction to particle 
sizes of 12.7–25.4 mm and roll press compaction at farm 
gate have been studied in literature,28–30 and may be con-
sidered as part of the future work. 

Results and discussion

Th is section presents the important results of this work. 
Th e results of the size reduction and densifi cation experi-
ments are fi rst presented followed by a discussion of how 
the results were adapted for model simulations. Th e simu-
lation results are then presented in detail.

Size reduction and densifi cation 
experiments

Th e results of size reduction experiments for Miscanthus 
showed that both bulk density and specifi c energy 
decreased according to a power law with increasing parti-
cle size (Fig. 5). Th e data were fi tted to a power law regres-
sion curve using Microsoft  Excel®, which was then used to 
determine the bulk density and energy consumption for 
the particle sizes of 16 mm and 25.4 mm. Th e results for 
switchgrass were similar to those for Miscanthus and are 
reported in the supporting information (Fig. S2). 

The experimental data for densification of Miscanthus 
showed that bulk density was inversely proportional 
to the particle size while specific energy of densifica-
tion was proportional to the particle size (Fig. 6). The 
data were fitted with a regression equation in the form 
of a power law using Microsoft Excel®, and the regres-
sion based values were used in model simulations. The 
regression curves were also used to determine values 
for 16 mm and 25.4 mm particle sizes via extrapolation. 
The results for switchgrass were similar to those for 
Miscanthus and are reported in the supporting informa-
tion (Fig. S3).

Figure 5. Variation in bulk density and specifi c energy 
consumption of size reduction with output particle size 
for Miscanthus along with their respective power law 
 regression fi ts; In the regression equations x is particle size 
in mm, y is bulk density in kg/m3 and z is specifi c energy 
in MJ/Mg dry matter; fi lled markers show values obtained 
by experiments while empty markers show regression 
 estimates; similar trends were observed for switchgrass.

Particle size (mm)

Bulk density Specific energy

Bulk density regression fit Specific energy regressoin fit

0

200

400

600

800

1000

1200

0

50

100

150

200

250

300

0 5 10 15 20 25 30

S
pe

ci
fic

 e
ne

rg
y 

(M
J/

M
g 

D
ry

 M
at

te
r)

B
ul

k 
de

ns
ity

 (
kg

/m
3 )

y = 263.78x-0.36

z = 943.02x-0.76

Figure 6. Variation in bulk density and specifi c energy 
of densifi cation with particle size after densifi cation by 
1.2 MPa for Miscanthus along with their respective power 
law regression fi ts; In the regression equations x is  particle 
size in mm, y is bulk density in kg/m3 and z is specifi c energy 
in MJ/Mg dry matter; fi lled markers show values obtained 
by experiments while empty markers show regression 
 estimates; similar trends were observed for switchgrass.

Bulk density Specific energy

Bulk density regression fit Specific energy regressoin fit

y = 611.92x-0.196

z = 0.3897x0.442

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30

S
pe

ci
fic

 e
ne

rg
y 

(M
J/

M
g 

D
ry

 M
at

te
r)

B
ul

k 
de

ns
ity

 (
kg

/m
3 )

Particle size (mm)



© 2014 Society of Chemical Industry and John Wiley & Sons, Ltd  |  Biofuels, Bioprod. Bioref. (2014); DOI: 10.1002/bbb

YN Shastri et al. Modeling and Analysis: Optimal size reduction and densification of biomass feedstock

the power requirement would be 617.5 kW. Th is value, 
along with the specifi c energy consumption obtained from 
switchgrass grinding experiments, was used to  determine 
the throughput rates for switchgrass grinding. Th e 
throughputs for Miscanthus and switchgrass are reported 
in supporting information (Tables S4 and S8, and Fig. S4).

Base case scenario: Size reduction

Th e simulation results for the base case scenarios for 
Miscanthus (Fig. 7) indicated that the optimal particle size 
range was 4–6 mm. Th e cost for 4 mm was $54.87 Mg–1 
and that for 6 mm was $54.65 Mg–1, the diff erence being 
within the numerical tolerance to ascertain the true opti-
mal size. For particle sizes smaller than 4 mm, the cost of 
grinding increased considerably and nonlinearly because 
the throughput of the hammer mill slowed signifi cantly 
to achieve the smaller particle sizes. Th is increased the 
total cost even though the storage and transportation costs 
were low (Fig. 7). In contrast, for particle sizes larger than 
6 mm, the grinding costs were low but the storage and 
transportation costs increased due to reduced bulk densi-
ties, which increased the total cost. 

Th e results for the base case scenario for switchgrass 
production (Fig. 8) were qualitatively very similar to 
those for Miscanthus. Th e optimal particle size was 6 mm 
with the cost of $60.77 Mg–1, while the cost for 4 mm of 
$61.53 Mg–1 was also very close to the optimal. Th e total 
cost of switchgrass production was slightly higher than 
that for Miscanthus for all particle sizes. Th e relatively 
small diff erence in cost despite the yield of Miscanthus 
being almost twice that of switchgrass was due to the way 
the scenarios were designed. Th e scenarios considered a 

particle size were also reported by Lam et  al.31 and Mani 
et  al.,32,33 respectively.

Data processing and adaptation

Th e size reduction experimental data for a particle size of 
8 mm and lower were generated using a two-stage (coarse 
and fi ne) reduction with a hammer and knife mill. Th e 
two-stage size reduction regime was used in the laboratory 
because it is commonly used in the industry for mate-
rial size reduction. Moreover, a hammer mill that could 
achieve particle sizes of interest while starting with fairly 
long stems of Miscanthus and switchgrass was not avail-
able. Ideally, the model should, therefore, also use the 
equipment performance data such as fi xed and operating 
costs, energy consumption, and throughput for ham-
mer and knife mill together. However, model relevant 
data were available only for the hammer mill, which was 
capable of achieving the particle sizes considered in this 
analysis. Th ese data are shown in supporting information 
(Tables S4 and S8). Moreover, single equipment achiev-
ing the desired particle size would be preferred from a 
commercial production standpoint. Th erefore, the model 
simulations assumed that the size reduction to all particle 
sizes was performed in a single stage with a hammer mill. 
Th e bulk density and specifi c energy consumption data 
from the experiments were assumed to be applicable for 
single stage hammer milling. 

Th e throughputs for the hammer mill were also needed 
for the simulations. We assumed that the throughput for 
the knife mill used for the experiments and the hammer 
mill considered in the model were similar for 2 mm out-
put particle size (4.53 Mg h–1). Th e total measured specifi c 
energy consumption for experimental coarse and fi ne size 
reduction of Miscanthus to 2 mm was 490.7 MJ Mg–1. By 
assuming that the effi  ciency of a commercial hammer 
mill was same as that of our experimental set-up, the total 
power requirement for the hammer mill was calculated 
as 617.5 kW. Th is would remain constant irrespective of 
the desired particle size since only the screen would be 
changed to achieve a specifi c particle size. Milling would 
take longer to achieve a smaller particle size, which will 
reduce the throughput and increase the specifi c energy 
consumption. Since the specifi c energy consumption for 
all particle sizes was known from experiments, those val-
ues along with the power of the hammer mill were used 
to calculate the throughputs. It was observed that the 
rates decreased almost linearly with particle size, which 
confi rmed the experimental observations. Since the same 
hammer and knife mills were used to process switchgrass, 

Figure 7. Variation of different costs of Miscanthus 
 production and provision as a function of hammer mill 
 output particle size.
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sizes of 6 mm and 16 mm did not follow this trend (Fig. 9). 
Th is was due to the approximate numerical approach of 
DDC used to solve BioFeed, which can converge to sub-
optimal solutions within ±5% of the optimal solution.17 
Th e total cost, though, followed the expected trend and 
these plots are reported in the supporting information 
(Fig. S5). Importantly, 25% and 50% increase in through-
put did not change the optimal particle size, and 75% 
increase in throughput made the optimal size to be 2–4 
mm. Th e optimal costs for 25%, 50%, and 75% increase in 
hammer mill throughput were $52.41 Mg–1, $50.52 Mg–1, 
and $49.43 Mg–1, respectively. Th is implies that the ham-
mer mill throughput had little impact on the optimal par-
ticle size range. Higher throughput also reduced the total 
energy consumption since the hammer mill needed to be 
operated for a shorter time, and this reduction was again 
higher for smaller particle sizes. However, this conclusion 
was subject to the assumption that the power consumption 
of the hammer mill remained constant at 617.5 kW. 

Th e storage costs were reduced by 25%, 50%, and 75% for 
all storage options in the model (on-farm covered and sat-
ellite storage) for the sensitivity analysis. Figure 9 plots the 
percentage reduction in total cost for all particle sizes with 
respect to the base case values for corresponding particle 
sizes for 25% reduction in storage costs. Complete cost 
plots are reported in the supporting information (Fig. S6). 
Results showed that lower storage cost led to a substantial 
cost reduction for larger particle sizes while its impact on 
smaller particle sizes was negligible. However, the optimal 
particle size continued to be 6 mm. Cost reductions for 
25.4 mm particle size were 11%, 23% and 34% for 25%, 

fi xed collection area and the biorefi nery capacities were 
optimized. Consequently, the optimal biorefi nery capac-
ity using Miscanthus feedstock for all particle sizes was 
about 2800 Mg d–1, while that using switchgrass feedstock 
was about 1600 Mg d–1. If the scenarios had been designed 
such that the biorefi nery capacity was fi xed, the cost of 
Miscanthus supply would have been much lower since 
the collection area would have been about 50% of that for 
switchgrass. In addition, hammer mill throughputs were 
lower for Miscanthus as compared to switchgrass, thereby 
impacting the relative costs (Tables S4 and S8 and Fig. S4 
from supporting information).

Th e optimal equipment selection for each farm cannot 
be reported here. Apart from the grinder that was fi xed 
for each scenario, all farms selected ‘Mower’ for harvest-
ing Miscanthus and ‘Mower conditioner’ for harvesting 
switchgrass. For both feedstocks, ‘Wheel Loader Bucket’ 
was selected for loading, and ‘Forage Wagon’ was selected 
for in-fi eld transport. Th e equipment number depended 
primarily on the farm size. Long-distance transportation 
of ground biomass was done using ‘Bulk Trailer’.

Sensitivity analysis

Hammer mill throughput was incremented in the simula-
tion by 25%, 50%, and 75% for each particle size and the 
percentage cost reduction was determined (Fig. 9 for 25% 
increase). Results showed that higher throughput reduced 
the total costs for smaller particle sizes substantially. 
However, its impact on the total cost of larger particle sizes 
was negligible. Th e percentage cost reduction for particle 

Figure 8. Variation in different costs for the production of 
switchgrass as a function of different hammer mill output 
particle sizes.
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Figure 9. Sensitivity analysis – Impact of 25% higher through-
put of the hammer mill and 25% lower storage cost on total 
cost of Miscanthus production for different particle sizes.
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50%, and 75% reduction in storage costs, respectively. Th e 
optimal costs for 25%, 50% and 75% reduction in storage 
costs were $50.17 Mg–1, $45.70 Mg–1, and $41.23 Mg–1, 
respectively. It should be emphasized that for the particle 
size of 4–6 mm, which was optimal for all scenarios, the 
impact of storage cost reduction was higher than that of 
hammer mill throughput increase. Th is could be used as a 
guide to focus technology improvement eff orts.

Th e sensitivity analysis with respect to the grinding cost 
(fi xed and operating) showed trends similar to those for 
hammer mill throughput and are reported in the support-
ing information (Figs S7 and S8). Th e cost of grinding was 
signifi cantly higher for smaller particle sizes. Hence, any 
reduction in grinding cost, possibly due to better equip-
ment, led to signifi cant reduction in total cost. Th e results 
for the sensitivity analysis with respect to the output bulk 
density of the hammer mill are discussed in the support-
ing information (Fig. S9). 

Similar sensitivity analyses were also conducted for 
switchgrass production. Th e results were qualitatively 
similar to those observed for Miscanthus and hence not 
discussed here. Th e results are reported in the supporting 
information (Figs S10–S15). 

Impact of angle of repose

Th e model assumed that on-farm storage sheds with 
three walls will have 10% buff er for safety and opera-
tional  fl exibility. However, 90% utilization of avail-
able storage volume may not be possible since ground 
biomass must be piled in a heap leaving a signifi cant 
volume unused. Th e fraction of this unused volume will 
depend on the angle of repose of ground biomass. Th e 
angle of repose of a granular material is the steepest 
angle of descent or dip of the slope relative to the hori-
zontal plane when material on the slope face is on the 
verge of  sliding. Preliminary experiments showed that 
the angle of repose of ground Miscanthus was about 45°. 
Assuming that  biomass can be piled up against one wall 
of the shed up to its roof, a 45° angle of repose implies 
that only 50%  volume of the shed can be utilized. Total 
costs for  diff erent particle sizes with this assumption 
were  calculated and compared with the base case costs 
(Fig. 10). As expected, costs increased  substantially for 
larger particle sizes due to the greater storage volume 
requirement. Th e optimal particle size aft er the angle of 
repose consideration reduced to about 2–4 mm. Th e cost 
for 2 mm was $67.67 Mg–1 and that for 4 mm was $67.68 
Mg–1, the diff erence being within the numerical tolerance 
to ascertain the true optimal size.

Figure 10. Impact of the consideration of angle of repose 
(AOR) of ground biomass on the total cost of Miscanthus 
production and its comparison with base case.
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Figure 11. Miscanthus production cost for scenarios 
with centralized storage and pre-processing (CSP) with 
and without densifi cation during transportation and its 
 comparison with base case.

Size reduction and densifi cation scenario 
for Miscanthus

As described previously, four scenarios were  modeled 
aft er  incorporating CSPs with size reduction and 
 possible densifi cation. Figure 11 compares the total cost 
of Miscanthus production for all four possibilities with 
the base case scenario previously discussed. Th e costs for 
1 mm particle size are not shown in Fig. 11 since those 
costs were much higher in all cases and therefore could be 
ignored. 
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When pre-processing was performed at the output of the 
CSPs, two important changes were observed:

1. Th e optimal particle size was 16 mm and the optimal 
total cost was $58.29 Mg–1. Th e costs for 12.7 mm and 
25.4 mm where within ±$1 Mg–1 of the optimal cost. 
In this scenario, biomass was stored in the CSPs in 
baled form, which meant that the cost of storage for 
the  scenario did not increase with the particle size 
(Fig. S21 in supporting information). Only the trans-
portation cost between CSPs and the biorefi nery was 
increasing with particle size (Fig. S22 in supporting 
information). Th erefore, the optimal particle size was 
much larger than that for the base case. For the particle 
size of 25.4 mm, the transportation cost between CSPs 
and the biorefi nery increased substantially to render 
that size sub-optimal.

2. Th e particle size at which the costs curves for base 
case and the CSP scenario intersected each other 
was between 8 mm and 12.7 mm, which was much 
lower as compared to that for the scenario with pre-
processing at the input of the CSPs. Th e reason again 
was the independence of storage cost with particle 
size. When pre-processing was performed at the input 
of CSPs, the storage cost increased with particle size. 
In contrast, the storage cost remained constant when 
pre-processing was at the output. Th erefore, as particle 
size increased, the benefi t of having CSPs at the output 
became stronger since greater savings in storage were 
observed. Th is led to the cost of the scenario becoming 
lower than that for the base case at a much smaller par-
ticle size.

Th e comparison also showed that the optimal total cost 
was the lowest for the base case scenario among these 
three scenarios ($54.65 Mg–1). Th is suggested that install-
ing CSPs without transportation densifi cation capability 
was not advisable. It may provide other benefi ts such as 
lower infl uence of supply disturbance as mentioned earlier. 
Moreover, biomass quality preservation may be better, 
which was not modeled here.

Figure 11 also shows the plots for the scenarios when 
the transportation between CSPs and biorefi nery was 
performed in a densifi ed form. We have again compared 
the options of pre-processing Miscanthus at the input or 
the output of the CSPs. Th e optimal particle size for pre-
processing at the input of CSPs was 16 mm, and the opti-
mal cost was $53.62 Mg–1. However, the costs for particle 
sizes from 6 mm to 25.4 mm were within ±$1 Mg–1 of the 
optimal cost, indicating that the identifi cation of a unique 
optimum was not possible. Th e optimal particle size when 

Th e cost trends are a function of the relative costs of size 
reduction, storage and transportation. Two points that 
need to be highlighted before discussing the results are:

• For the base case, only one pre-processing step of size 
reduction was performed. In contrast, the scenarios 
with CSPs necessitated two pre-processing steps, 
namely, baling at the farms and size reduction at the 
CSPs. Miscanthus baling was quite expensive since 
the hay equipment was not effi  cient and dedicated 
equipment is not yet available. Th e average cost of 
Miscanthus baling was about $21 Mg–1. In the size 
reduction and densifi cation scenarios, farms per-
formed baling while grinding was performed at the 
CSPs. Th e total cost of pre-processing for the scenarios 
with CSPs, therefore, was signifi cantly higher for par-
ticle sizes of 4 mm and higher (Fig. S20 in supporting 
information).

• Th e storage and transportation costs depend on the 
bulk density of the feedstock. Here, it is important to 
note that for particle sizes of 4 mm and smaller, the 
bulk density of ground biomass was higher than the 
bale density (150 kg m–3), while it was lower than the 
bale density for other particle sizes. Th erefore, storage 
and transportation of baled biomass became more eco-
nomical than ground biomass when particle size was 
greater than 4 mm. Since the density of the feedstock 
at the time of transportation and storage changes for 
diff erent scenarios, the costs also change accordingly 
(Figs S21 and S22 in supporting information). 

Th e total costs shown in Fig. 11 were the result of the 
interplay between the relative costs of storage and trans-
portation with respect to the pre-processing costs. 

Without any transportation compression, when pre-
processing was performed at the input of the CSPs, the 
optimal particle size was 6-8 mm, the costs being $60.10 
Mg–1 for 6 mm and $60.55 Mg–1 for 8 mm. Th e relative 
cost trends provided important insights. Th e total cost 
for this scenario was higher than that for the base case 
for all particle sizes except 25.4 mm. At particle sizes of 
16 mm and lower, the higher cost of performing two pre-
processing steps dominated the total cost. Th e diff erence 
started to reduce for particle sizes of 6 mm and higher 
because biomass of density lower than the bale density was 
being handled all along the supply chain in the base case. 
In contrast, when CSPs were used, the on-farm storage 
and fi rst leg of transport was of biomass of higher density 
(bale density). Th is diff erence eventually became so high 
that the total cost for the CSP scenario was lower for the 
particle size of 25.4 mm. 
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pre-processing was at the output of the CSPs was 25.4 mm 
and the optimal cost was $48.31 Mg–1. Th e results showed 
that the benefi t of pre-processing at the output instead of 
the input was also observed in these scenarios. 

An important observation when compared to the CSP 
scenarios without densifi cation was that the total costs 
were much lower, and that was true for both possibili-
ties of conducting pre-processing at the CSPs. Th is was 
expected since densifi cation made transportation of 
ground biomass much less expensive (Fig. S22 in sup-
porting information). Another important diff erence was 
that the cross-over points for the costs with the base case 
for both scenarios were around the particle size of 6 mm. 
Th is was because densifi cation during transportation 
reduced the high transportation costs associated with 
larger particle sizes. Th erefore, such a system could take 
advantage of the fact that size reduction to larger particle 
sizes was less expensive and transportation was also less 
expensive due to densifi cation. Th is made the scenarios 
more economical at lower particle sizes. Consequently, 
the optimal particle sizes for both these scenarios were 
much larger.

Contrary to scenarios without any densifi cation, the 
optimal costs for both scenarios with densifi cation were 
lower than the optimal costs for the base case. While the 
diff erence for scenario with pre-processing at CSP input 
was small ($1.03 Mg–1), the diff erence for the scenario with 
pre-processing at CSP output was $6.31 Mg–1. As men-
tioned earlier, the model did not consider the cost of den-
sifi cation through compression. Th erefore, the cost savings 
need to be properly interpreted. Th e cost diff erence rep-
resents the upper bound on the total investment to set up 
and operate the infrastructure for biomass densifi cation. 
We need to calculate the total capital and operating cost 
of the biomass densifi cation equipment at CSPs and spe-
cialized trucks needed to transport the densifi ed biomass. 
If this cost on a per unit biomass basis is less than $6.31 
Mg–1, then it is benefi cial to set-up such a supply system. 
Th e quantifi cation of this upper bound is an important 
result of this work.

Th e optimal equipment selection for each farm cannot 
be reported here. All farms selected ‘Mower’ for harvest-
ing and ‘Baler (contractor)’ for baling. ‘Gooseneck Trailer’ 
was used for bale transport within the farm, and the 
‘Telescopic Bale Loader’ was used for loading onto the 
transportation truck. Th e equipment number depended 
primarily on the farm size. Long distance transportation 
of baled biomass was done using ‘F-40 Flatbed Trailer’, 
while that of ground biomass was done using ‘Bulk 
Trailer’.

Size reduction and densifi cation scenario 
for switchgrass

Th e same scenarios with the consideration of CSPs as 
modeled for Miscanthus were also modeled for switch-
grass. Th e total cost was again a function of the relative 
pre-processing, storage, and transportation costs as a 
function of diff erent particle sizes. Th e independent cost 
curves for these categories have been reported in the sup-
porting information (Figs S24–S27). Figure 12 shows the 
total cost curves for the four scenarios and compares those 
with the base case cost curve for switchgrass. 

Compared to the results for Miscanthus, an important 
diff erence for switchgrass was that the costs of all scenarios 
with CSPs were lower than that for the base case scenario 
for all particle sizes. Th us, the crossover of the cost curves 
was not observed. Th is was mainly due to the signifi -
cantly lower baling cost for switchgrass. Baling was much 
cheaper for switchgrass than Miscanthus since hay baling 
equipment could be used. Th e average cost of baling was 
about $11.2 Mg–1. Baling was also signifi cantly less expen-
sive than grinding for switchgrass, while the two costs 
for Miscanthus were comparable. Moreover, grinding of 
switchgrass at CSPs was cost-eff ective since a large amount 
was being processed, thereby taking advantage of the econ-
omy of scale. Th erefore, when the CSPs were installed, the 
farms could bale biomass, which reduced the total on-farm 
production cost. Th e total pre-processing cost for the sys-
tem did not increase much as compared to Miscanthus. Th e 

Figure 12. Switchgrass production cost for scenarios 
with centralized storage and pre-processing (CSP) with 
and without densifi cation during transportation and its 
 comparison with base case.
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storage cost for the CSP scenario reduced since baled bio-
mass required less expensive on-farm storage options than 
ground biomass. Th e overall eff ect was that the total cost of 
production was lower for the scenario with pre-processing 
at the CSPs. As the ground biomass particle size increased 
beyond 4 mm, the scenario with CSPs became even more 
attractive since baled biomass of higher density was being 
handled in the fi rst storage and transportation operations 
while the loose ground biomass needed to be handled only 
between CSPs and biorefi nery. Th ese diff erences in results 
for Miscanthus and switchgrass emphasized the complex 
interaction among diff erent stages of feedstock production 
and provision, which could be diff erent for diff erent energy 
crops. Th is highlights the value of a system-level model like 
BioFeed to provide case specifi c recommendations.

With pre-processing at the input of the CSPs and no 
densifi cation, the optimal particle size was 6–8 mm with a 
cost of $55 Mg–1 for 6 mm and $55.7 Mg–1 for 8 mm. Th is 
was a reduction of $5.77 Mg–1 from the base case. When 
pre-processing was performed at the output of the CSPs 
without densifi cation, the costs reduced for a particle size 
of 6 mm and higher, and this reduction was higher for 
larger particle sizes. Th is observation was similar to that 
for Miscanthus and the reason has been explained in the 
previous section. Th e optimal particle size was 8 mm with 
the cost of $52.73 Mg–1. However, the costs for 6, 12.7, and 
16 mm particle sizes were within ±$1 Mg–1 of the optimal 
cost, indicating that the identifi cation of a unique opti-
mum was not possible. Th e optimal cost was $8.04 Mg–1 
lower than the optimal cost for the base case. Th ese results 
indicated that the installation of CSPs provided defi nite 
benefi ts when size reduction was to be performed. 

Th e addition of densifi cation to size reduction further 
reduced the total cost for scenarios with processing at the 

input as well as the output of the CSPs. As explained previ-
ously, this was due to the reduced cost of transportation of 
switchgrass between the CSPs and the biorefi nery, and this 
eff ect was magnifi ed for larger particle sizes. Th e optimal 
particle size with pre-processing at the input was 8 mm. 
Th e optimal cost was $48.12 Mg–1, but the costs for 6, 12.7, 
and 16 mm particle sizes were within ±$1 Mg–1 of the opti-
mal cost. Th e reduction in the optimal cost as compared 
to that for the base case was $12.65 Mg–1. Th e optimal 
particle size with pre-processing at the output was 25.4 
mm with the cost of $40.64 Mg–1, a reduction of $20.13 
Mg–1 over the optimal cost for the base case. As mentioned 
previously, these diff erences provide upper bounds on the 
investment into the necessary equipment since those costs 
have not been included in the cost calculations.

Th e optimal equipment selection for each farm cannot 
be reported here. All farms selected ‘Mower conditioner’ 
for harvesting. Th e smaller farms selected a ‘Round Baler’ 
while the larger farms selected a ‘Square Baler’. ‘Gooseneck 
Trailer’ was used for bale transport within the farm, and 
the ‘Telescopic Bale Loader’ was used for loading onto the 
transportation truck. Th e equipment number depended 
primarily on the farm size. Long distance transportation of 
baled biomass was done using ‘F-40 Flatbed Trailer’, while 
that of ground biomass was done using ‘Bulk Trailer’.

Table 1 summarizes the optimal particle size and cost 
values for all the scenarios for both crops studied in this 
work. 

Conclusions

Th e determination of the optimal particle size and densi-
fi cation level of biomass feedstock is very important: It is 
a trade-off  between the cost of size reduction (grinding) 

Table 1. The optimal particle size and cost of all scenarios modeled in this work for Miscanthus and 
switchgrass; the difference between the optimal costs for scenarios with size reduction at CSPs as 
compared to the base case scenario.

Miscanthus Switchgrass

Optimal 
size (mm)

Optimal cost 
($ Mg–1)

Reduction from 
base case ($ Mg–1)

Optimal 
size (mm)

Optimal cost 
($ Mg–1)

Reduction from 
base case ($ Mg–1)

Base case: Size reduction at farms 6 54.65 – 6 60.77 –

Size reduction at CSP input; no 
densifi cation

6 60.10 –5.54 6 55.0 5.77

Size reduction at CSP output; no 
densifi cation

16 58.29 –3.64 8 52.73 8.04

Size reduction at CSP input; 
densifi cation for transportation

16 53.62 1.03 8 48.12 12.65

Size reduction at CSP output; 
densifi cation for transportation

25.4 48.31 6.34 25.4 40.64 20.13



© 2014 Society of Chemical Industry and John Wiley & Sons, Ltd  |  Biofuels, Bioprod. Bioref. (2014); DOI: 10.1002/bbb

YN Shastri et al. Modeling and Analysis: Optimal size reduction and densification of biomass feedstock

and densifi cation through compression and the effi  ciency 
in storage, transportation, as well as conversion. Th is work 
integrated experimental and modeling work to provide 
quantitative insights on this topic. Grinding and densifi ca-
tion data for Miscanthus and switchgrass generated using 
experiments were incorporated in BioFeed, a system-level 
optimization model, to simulate diff erent supply chain con-
fi gurations. Th e results showed that 4–6 mm was the opti-
mal particle size for both Miscanthus and switchgrass. Th e 
optimal costs were $54.65 Mg–1 for Miscanthus and $60.77 
Mg–1 for switchgrass. Sensitivity analysis showed that 
although the hammer mill throughput, cost, and output 
bulk density impacted the total cost for all particle sizes, 
signifi cant changes from the base case values were needed 
to lead to a diff erent optimal particle size. Since densifi ca-
tion at farms was not expected to be practical, scenarios 
with size reduction and densifi cation at the county specifi c 
centralized storage and pre-processing facilities were simu-
lated. Results showed that such a system could reduce the 
total costs by as much as $6.34 Mg–1 for Miscanthus and 
$20.13 Mg–1 for switchgrass over the base case. However, 
cost of achieving such densifi cation must be considered to 
determine the real cost reduction. Th erefore, the cost dif-
ferences provided the upper bound on the investments that 
could be made to set-up and operate such systems. In the 
future, a similar analysis must be conducted for biomass 
processing so that the optimal particle size from the whole 
systems perspective can be determined. 
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