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The mean diameters of particles in a free-falling flow regime were estimated using a com-

bination of theory and measurements. The flow regime consisted of an intermittent

sequence of clumps of particles separated by spacings among them. The objective of this

research was to determine the mean diameters of particles in the flow, based on measure-

ment of the lengths of the clumps and spacings. The model used to calculate the diameter

estimate was based on the assumption that the flow forms a Poisson process, where

particles arrive at a time-of-flight sensor independently in space. This assumption implies

that the flow density in particles per metre can be obtained by taking the reciprocal value of

the mean length of the spacings among clumps of particles. This facilitated the derivation

of a method for estimating the theoretical mean particle diameter.

Discrepancies between the measured data and its theoretical counterpart could be caused

by (1) the Poisson assumption not being valid and (2) measurement errors. To isolate these

effects the Poisson assumption was tested. The result was that among 40 datasets, grouped

into 10 replicates taken at four different fall heights causing four different flow densities, 30

were assumed to be Poisson driven. The 10 remaining datasets had a high density at which

point the Poisson assumption appeared to break down. Subsequently, using only the 30 ex-

periments which were assumed Poisson driven, the sensor was characterised by equalising

predicted clump and spacing lengths with their measured equivalents. This yielded two

sensor characteristic constants, which were used in the measurement model to estimate

the mean diameter of the particles among a range of flow densities.

The diameter of 4.5 mm particles was estimated using the 30 datasets assumed to form

a Poisson process, with a mean value of 4.50 mm and a standard deviation of 0.044 mm

(1% coefficient of variation) in a flow density range from 67 particles m�1 to 167 parti-

cles m�1. The maximum and minimum values were 4.57 mm (þ1.6% error) and 4.42 mm

(�1.8%), respectively.

Published by Elsevier Ltd on behalf of IAgrE.
1. Introduction

The flowrate of granular materials is an important measure

for monitoring and control in agricultural applications such

as in fertiliser application, the transport of seeds and fertiliser
ft), ccrespi@ucla.edu (C.M
Elsevier Ltd on behalf of
in the tubes of pneumatic planters, as well as in flows of grains

and fruits during harvesting (yield monitoring). Grift and

others (Grift, 2001; Grift et al., 2001; Grift, 2003) devised

methods to measure the flowrate by measuring the lengths

of clumps of particles and spacings among them. However,
. Crespi).
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Nomenclature

N initial number of particles in experiment

NT total number of clump/spacing arrivals

Theoretical quantities

DTheor theoretical mean diameter of particles, m

CLi,Theor theoretical length of ith clump, m

SLi,Theor theoretical length of ith clump, m

CLTheor mean of theoretical clump lengths over NT

measurements, m

SLTheor mean of theoretical spacing lengths over NT

measurements, m

lTheor theoretical flow density, m�1

TLTheor theoretical total length passing during experiment,

m

Measured quantitiesbD estimator for mean diameter of particles, m

CLi length of ith clump, m

SLi length of ith spacing, m

CL mean of clump lengths over NT measurements, m

SL mean of spacing lengths over NT measurements,

m

TCi interruption time of ith clump, s

TSi interruption time of ith spacing, s

TFi flank time representing the velocity of ith clump

and spacing

vi velocity of ith clump/spacing, ms�1

Characterisation quantities

bS characteristic value by which sensor measures

spacing lengths, m

bC characteristic value by which sensor measures

clump lengths, mbbS estimator for mean characteristic value by which

sensor measures spacing lengths, mbbC estimator for characteristic value by which sensor

measures clump lengths, m
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in these methods the mean particle diameter was obtained

using off-line measurements rather than from the on-line

data. The mean particle diameter can be used for purposes

such as on-line mass flow measurements, where the flowrate

in particles per second is multiplied by the mean particle vol-

ume and material density. Secondly, the mean particle diam-

eter can be used as an input to ballistic models, for instance to

predict landing locations of fertiliser particles in aerial appli-

cation as proposed by Grift and Hofstee (2002).

Estimation of the flowrate, expressed in particles per time

unit, was shown possible by assuming a Poisson arrival pro-

cess in time, which requires merely a single plane photo-inter-

ruption device since no information about lengths of either

clumps or spacings is needed (Grift and Crespi, 2008). In

contrast, to measure the mean particle diameter as discussed

here, a dual layer photo-interruption device is needed, com-

monly termed a time-of-flight device. Here the assumption

was made that the particles arrive at the sensor according to

a Poisson arrival process in space. In other words, it is assumed

that the particles arrive at the sensor independently, in a sim-

ilar way to classical examples from queuing theory such as

telephone calls arriving at a helpdesk. If the process is indeed

Poisson driven, the flowrate equivalent ‘density’, expressed

here in particles per length unit, is equal to the reciprocal

value of the mean of the spacing lengths (Hall, 1988). This as-

sumption is essential to derive a method of estimating the

theoretical mean particle diameter. In practice, it is not neces-

sary to have all the inter-particle lengths which cannot be

measured due to the clumping effect. Since only the mean

value of the spacing lengths is required, the sum of the

inter-clump lengths divided by the number of clumps (which

is counted without error) can be used.

Incorporating the spacing lengths yields a major simplifi-

cation compared to earlier attempts which focused on solely

the clump lengths (Grift, 2003), since the theoretical distribu-

tion of the clump lengths is complicated (Daley, 2001; Crespi

and Lange, 2006). The intermittent sequence of spacings and

clumps formed by a Poisson process is often termed as
a coverage process or simple linear Boolean model (Hall,

1988). Other applications of the simple linear Boolean model

are found in particle and electronic counters (Takacs, 1962),

diffusion of suspended particles (Bingham and Dunham,

1997), Markov/General/N queue (Kleinrock, 1975) and biomed-

ical applications (Crespi et al., 2005).

The objective of this research was to estimate the mean

particle diameter of free-falling granular particles using only

measurements of clump and spacing lengths.
2. Theoretical framework

In this section, a theoretical method for estimating the mean

particle diameter assuming a Poisson driven granular particle

flow is derived. Fig. 1 shows a simplified granular flow regime

where particles form clumps with spacings among them. Grift

(2001) defined the occupancy rate ORTheor, a measure of flow

density as follows:

ORTheor ¼
NDTheor

TLTheor
(1)

where N is the initial number of particles in the experiment,

DTheor is the mean particle diameter in m, and TLTheor in m is

the total length of the space passing during the experiment.

Grift (2001) also stated that the initial number of particles N

is related to the occupancy rate as follows:

N ¼ NTeORTheor (2)

where NT is the number of clump/spacing pairs counted during

the experiment. In Fig. 1 for example, among N¼ 20 initial par-

ticles NT¼ 8 clump/spacing pairsare formed and theoccupancy

rate is equal to the natural logarithm of 20/8 being 0.916.

The flow density lTheor in particle m�1 is equal to the num-

ber of particles in the experiment N divided by the total length

passing during the experiment TLTheor in m, or

lTheor ¼
N

TLTheor
(3)



Fig. 1 – Granular flow of particles forming clumps and spacings.
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By substitution of Eq. (3) into Eq. (1) the relationship between

the occupancy rate ORTheor and the flow density lTheor in

m�1 is obtained:

ORTheor ¼ lTheorDTheor (4)

Substituting the occupancy rate ORTheor from Eq. (2), into Eq.

(4) the mean particle diameter can be expressed as

DTheor ¼
ORTheor

lTheor
¼ 1

lTheor
ln

�
N
NT

�
(5)

This equation for the mean diameter contains the initial num-

ber of particles (which is not known in practice) and the flow

density lTheor, which is not measured directly. However,

when assuming a stationary Poisson process in space, the

flow density lTheor in m�1 is equal to reciprocal value of the

mean spacing lengths SLTheor in m (Hall, 1988) or

lTheor ¼
1

SLTheor

(6)

Therefore the mean diameter can be written after substitution

of Eq. (6) into Eq. (5):

DTheor ¼ SLTheorln

�
N
NT

�
(7)

This step replaced the flow density by the measurable mean

spacing lengths, but the unknown initial number of particles

N remains to be replaced by a quantity measurable in practice.

The total length of space TLTheor in m, passing during the ex-

periment is equal to the sum of the clump and spacing

lengths. This can be written in terms of the means of the

clump and spacing lengths of which NT are counted during

an experiment:

TLTheor ¼
XNT

i¼1

�
CLi;Theor þ SLi;Theor

�
¼ NTðCLTheor þ SLTheorÞ (8)
The total number of particles in the experiment is equal to the

flow density lTheor in m�1 from Eq. (6) multiplied by the total

length TLTheor in m from Eq. (8) or

N ¼ lTheor � TLTheor ¼
1

SLTheor

NTðCLTheor þ SLTheorÞ

¼ NT

�
CLTheor

SLTheor

þ 1

�
(9)

This implies that the ratio (N/NT) in Eq. (5) can be written

as a function of measurable quantities being the mean

clump lengths CLTheor in m and mean spacing lengths

SLTheor in m:

N
NT
¼
�

CLTheor

SLTheor

þ 1

�
(10)

Thus, an equation for the mean particle diameter bDTheor in m

can be written in terms of quantities CLTheor;SLTheor (which

are values that can be measured in practice) by substitution

of Eq. (6) and Eq. (10) into Eq. (5):

bDTheor ¼ SLTheorln

�
CLTheor

SLTheor

þ 1

�
(11)

2.1. Simulation example of diameter estimation in
a Poisson driven flow experiment

To illustrate the calculation method, a simulation of a Pois-

son flow experiment is shown in Fig. 2. Here 4000 particles

were used with Gaussian distributed diameters, a mean of

4.5 mm and a standard deviation of 0.5 mm. The flow den-

sity was set to 100 particles m�1, which resulted in 2547

clump/spacing pairs. The resulting mean clump and spacing

lengths were 5.6901 mm and 9.957 mm, respectively. The



Fig. 2 – Simulated Poisson process where 4000 particles with a Gaussian distributed diameter with a mean of 4.5 mm and

standard deviation of 0.5 mm were used at a flow density of 100 particles mL1.
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mean particle diameter can now be estimated using Eq. (11)

as follows:

bDTheor ¼ SLTheorln

�
CLTheor

SLTheor

þ 1

�
¼ 9:957 mm� ln

�
5:6901 mm
9:957 mm

þ 1

�
¼ 4:5007 mm

The flow density can also be estimated, using Eq. (6):

lTheor ¼ 1=SLTheor ¼ 1=9:957 mm ¼ 100:4 particles m�1.

2.2. Sensor characterisation

EstimatingthemeandiameterusingEq.(11) isbasedonatheoret-

ical concept, which relies on the principle that the mean clump

and spacing lengths are measured without error. In practice

the sensor measures both the length of the clumps and spacings

with a certain error. The sensor is an optical device that projects

magnified images of passing clumps onto two sets of receiver ar-

rays as shown in Fig 3. The sensor was adjusted such that parti-

cles falling in the centre of the tube are projected in focus, but

particles falling away from the centre are observed out of focus.

In addition, the exact switching points of the optical sensor ar-

rays are unknown, since they dependon the intensity of the light

they receive. A third error is caused by the fact that each sensor

array contains 30 discrete receivers, and particles may either fall

in-line with the receivers or offset from their centrelines.
To accommodate for the errors in the measured clump and

spacing lengths the system was characterised. Fig. 4 shows an

idealised interruption process. The velocity of the ith clump vi

in m s�1 is equal to the distance between the sensor arrays b in

m, divided by the time TFi in s required to move the clump

head from the upper to the lower interruption plane, or from

event (1) to event (2) or

vi ¼
b

TFi
(12)

where a constant velocity was assumed since the distance

between the interruption planes b is small (approximately

1 mm). The length of the clump CLi in m can now be mea-

sured by multiplying the clump velocity vi by the time inter-

val TCi in s during which the clump interrupts either plane

from (1) to (3) or (2) to (4):

CLi ¼ viTCi ¼
b

TFi
TCi ¼ b

TCi

TFi
(13)

Inreality theclumplengths aremeasuredwith a certain error as

mentioned. Therefore, instead of using a single parameter b in

m representing the distance between the interruption planes,

a lumped parameter bC in m was introduced which is equal to

the distance b multiplied by an error compensation factor.

CLi ¼ viTCi ¼ bC
TCi

TFi
(14)



Fig. 3 – Experimental arrangement in which particles are

dropped from a funnel through an optical time-of-flight

sensor. The sensor measures the velocity of clumps using

the time difference between the interruption of sensor array

1 to sensor array 2. The lengths of clumps and spacings are

measured using the time during which the clump interrupts

either sensor array in combination with the measured

velocity. The lenses magnify the image of the clumps onto

the sensor arrays, which allows using relatively large

sensors (5 mm) to detect particles as small as 1 mm.
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The lumped parameter bC was subsequently characterised using

measurement data. The mean value of the clump lengths is now

CL ¼ bC

NT

XNT

i¼1

TCi

TFi
(15)
Fig. 4 – Time-of-flight sensor, which records interruption

times to measure clump and spacing lengths. The velocity

of the clump corresponds to the clump travelling through

a distance b, (1) to (2), and the length of the clump follows

from multiplying the velocity by the time during which the

clump passes one sensing line representing a sensor array

(from (1) to (3)).
Solving for bC this gives

bC ¼ CL
NTPNT
i¼1

TCi
TFi

(16)

To calculate the value of bC, the measured mean clump length

CL in m was replaced by its theoretical equivalent:

bbC ¼ CLTheor
NTPNT
i¼1

TCi
TFi

(17)

By combining Eqs. (7) and (10) while eliminating the theoretical

mean spacing length SLTheor, the theoretical mean clump length

CLTheor can be written in terms of the parameters known in the

theoretical domain such as the original number of particles N,

the number of clump/spacing pairs NT as well as the mean diam-

eter DTheor in m as follows:

CLTheor ¼
�

N
NT
� 1

� 
DTheor

lnð N
NT
Þ

!
(18)

Analogously, the spacing lengths are measured using

SLi ¼ viTSi ¼ bS
TSi

TFi
(19)

Note that the spacing velocity is assumed equal to the velocity of

its preceding clump. The lumped parameter bS was also charac-

terised using measurement data. The mean value of the spacing

lengths is
Fig. 5 – Photo of the time-of-flight device. The incandescent

light source is covered with a fan for cooling, as it projects

light through a slit in the fall tube onto dual sensor arrays

after being magnified by the two lenses. Particles falling

from the funnel through the tube form clumps whose

shadow images are detected allowing the measurement of

their velocity and lengths.
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SL ¼ bS

NT

XNT

i¼1

TSi

TFi
(20)

Solving for bS gives

bS ¼ SL
NTPNT
i¼1

TSi
TFi

(21)

To calculate the value of bS, the measured mean spacing length

SL in m was replaced by its theoretical equivalent:bbS ¼ SLTheor
NTPNT
i¼1

TSi
TFi

(22)

By manipulating Eq. (7), the theoretical mean spacing length

SLTheor can be written in terms of parameters known in the the-

oretical domain such as the original number of particles N, the

number of clump/spacing pairs NT as well as the mean diameter

DTheor as follows:

SLTheor ¼
DTheor

lnð N
NT
Þ

(23)

The sensor characteristic values bC and bS were determined

using Eqs. (18) and (23) for all 30 datasets. The mean values
Fig. 6 – Screenshot of FlowSim 1.0, a MatLab� program capable

validation based on measured clump and spacing lengths. The

multiple datasets into account. This feature was used for chara
obtained among these 30 datasets were assumed to be the

most reliable and adopted as sensor characteristic constants.

These constants ensure that the mean of the calculated mean

diameters among all experiments was equal to the true mean di-

ameter of the particles being 4.5 mm. The performance measure

of calculating the mean diameter estimation method is now the

variability of the calculated mean diameters among a range of

flow densities, since the values of bC and bS are kept constant.

The mean particle diameter was calculated using the mea-

sured clump and spacing lengths from Eq. (15), respectively,

Eq. (20), which include the characterisation parameters, bC

and bS as follows:bD ¼ SLln

�
CL

SL
þ 1

�
(24)

3. Materials and methods

3.1. Experimental arrangement

Experiments were carried out using a funnel and fall-tube

arrangement as shown in Fig. 3. The flow density in particles
of simulating Poisson processes, used for Poisson model

program also has a batch mode, which allows for taking

cterisation of the sensor.
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per second is relatively independent of the drop height. In con-

trast, the density in particles per metre as used here is a func-

tion of drop height, since the particles accelerate in the tube.

Since the mean diameter equation is based on the latter defini-

tion of flow density, it was useful to study the performance of

the method using four drop heights. The binary signals (one

of the two is illustrated) were recorded and the spacing and

clump lengths measured using Eqs. (14) and (19) which include

the two sensor characteristic constants bC and bS. For each ex-

periment, 4000 spherical particles were dropped into the fun-

nel in a swift motion after which the funnel emptied owing to

gravity. The interruption times contained in the binary signals

were measured using a counter/timer board with a clock rate of

20 MHz (PCI-6601, National Instruments, TX, USA).
3.2. Time-of-flight device

The optical time-of-flight device as shown in Fig. 5 consists

from front to back of an incandescent halogen light source

placed under a fan for cooling, a fall tube and funnel, a con-

verging lens, a diaphragm, a diverging lens and dual sensor ar-

rays in the background. Each sensor array contains 30 digital

optical switches termed ‘OptoSchmitts’ (SDP8601, Honeywell,

Scotland, UK) with a fall time of 15 ns and a rise time of 60 ns.

All 30 switches in either array are connected in a logical AND

function. In this way, when all OptoSchmitts receive light the

array output is high, and if one or more are blocked the array

output becomes low. This mechanism effectively produces

two stacked light sensitive grids each consisting of 30 parallel

optical interruption lines placed at a mutual lateral distance of

approximately 0.63 mm. The lenses in the sensor magnify the

image of the particles eight times, which enables the detection

of small particles as small as 1 mm diameter with relatively
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Fig. 7 – Counted number of clump/spacing pairs from

experiments with 4000 identical 4.5 mm particles. The

solid line represents the theoretical number of clump/

spacing pairs as a function of flow density. The highest

density dataset around 160 particles mL1 was considered

to be non-Poisson and excluded from the characterisation

and the mean diameter estimation process.
large sensors (5 mm width). A complete description of the

device can be found in Grift and Hofstee (1997).
3.3. Analysis software

The mean diameter calculations were carried out using a ded-

icated program named FlowSim, written in MatLab� (2007).

This program contained a module capable of simulating Pois-

son driven particle flow, a matching module for model valida-

tion as well as batch processing of data files, which enable

characterisation. Fig. 6 shows a screenshot from the program.
4. Results

To assess how closely the flow resembles a theoretical Poisson

process, the number of clump/spacing pairs was computed as

a function of the flow density. The relationship between the

theoretical number of clump/spacing pairs and the flow

density was obtained by substituting Eq. (4) into Eq. (2) leading

to

NT ¼ Ne�lTheor�DTheor (25)

Here N was set to 4000 initial particles, DTheor to 4.5 mm, and

the flow density ranged from 60 particles m�1 to 180 parti-

cles m�1. When the counted number of clump/spacing pairs

is compared to their theoretical counterparts, shown as a solid

line in Fig. 7, it is clear that they are closely correlated. How-

ever, at the highest flow densities (measured at a small dis-

tance from the funnel) the number of clump/spacing pairs

NT is consistently lower than the theoretical numbers. It was

concluded that here the Poisson assumption is not viable,

since the flow had not made the complete transition from
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Fig. 8 – Estimated diameters of particles from experiments

with 4000 identical 4.5 mm particles. The mean of the

estimates was 4.50 mm (after characterisation) with

a standard deviation of 0.044 mm (coefficient of variation

1%) based on the 30 datasets with flow densities from

approximately 67 particles mL1 to 167 particles mL1. The

highest density datasets at approximately

160 particles mL1 were assumed non-Poisson driven.
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a relatively fixed packing in the funnel to a random arrival pro-

cess. Therefore, the 10 datasets with the highest flow densities

were not used in the characterisation process. The values of bC

and bS based on the remaining 30 datasets were found to be

0.79 mm and 1.21 mm, respectively.

After characterisation, the mean diameters of the particles

in the flow were calculated using Eq. (24). Fig. 8 shows the

resulting calculated diameters as a function of flow density,

which are close to the true 4.5 mm for the lower flow densities.

The diameter of the 4.5 mm particles was estimated from the

30 datasets assumed to form a Poisson process, with a mean

value of 4.50 mm and a standard deviation of 0.044 mm (1%

coefficient of variation). The maximum and minimum values

were 4.57 mm (þ1.6% error) and 4.42 mm (�1.8% error), re-

spectively. The high density datasets around 160 particles m�1

are merely shown in the figure to illustrate the effect of a non-

Poisson process on the estimated diameters.
5. Conclusions

A Poisson model was used to derive a theoretical method for

estimating the mean diameter of particles free-falling in

a tube. After characterisation of a time-of-flight sensor and

estimation of the mean particle diameters, the following

conclusions were drawn:

1. The flow of free-falling particles in a tube closely resembles

a Poisson process, unless the fall distance from a funnel is

too short and there is insufficient time for the flow to be

transformed into a fully random arrival process.

2. The optical time-of-flight sensor configuration is adequate

to estimate mean particle diameters in granular flow after

characterisation.

3. The mean diameter of the particles can be estimated accu-

rately after characterisation: for 4.5 mm diameter particles

it is consistent among flow densities varying from approx-

imately 67 particles m�1 to 167 particles m�1.

The limitations of the method are that it has only been

tested for identical particles in a relatively low density flow re-

gime. Although theoretically the method should work for any

particle distribution, this has not been tested in practice. Sec-

ondly, the sensor arrangement contains three independent

types of error, and to make this method truly universal an

improved sensor with lower errors is required. Thirdly, the

method fails when the flow is so dense that no spacings

among the clumps can be detected. In this case it is advised

to accelerate the flow such that a lower flow density (in parti-

cles per metre) is obtained, or the flow can be split into

subflows of lower density.
Intuition indicates that every granular flow will over time

become a random arrival process (Poisson process) due to ran-

dom disturbances experienced by the flow elements during

their travel. However, in many applications, the flow elements

are initially ordered such as cars waiting in line for a traffic

light, grains and fruits transported on compartmentalised

conveyor belts, and as in this paper, particles in a fixed

location in a funnel. In these cases the flow needs time to

make the transition to a Poisson flow and therefore it is ad-

vised to place the sensor ‘far enough’ from the initial deter-

ministic state. How fast granular materials transform into

a Poisson flow, under what conditions, and why, is currently

unknown.
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