A spinning-tube device for dynamic friction coefficient measurement of granular fertiliser particles

G. Kweon, T.E. Grift, D. Miclet

Department of Agricultural and Biological Engineering, University of Illinois, Urbana, IL, USA
Agricultural and Environmental Engineering Research Institute (CEMAGREF), Montoldre, France

1. Introduction

The popular spinner-type fertiliser spreader discharges particles after accelerating them along a vane under high centrifugal and Coriolis forces. This implies that the dynamic friction coefficient of the particle/vane combination plays an important role in the shape, throw distance, and eventual uniformity of the spread pattern. A higher dynamic friction coefficient results in particles remaining longer on the disc, which rotates the pattern in the rotational direction of the disc about its vertical axis. In addition, the particle discharge velocity will be lower, which causes particles to land closer to the spreader, reducing the spread width.

Traditionally, spinner-type fertiliser spreaders were designed for constant application rates and periodical calibration was recommended to assure proper uniformity. If, over time, the dynamic friction coefficient varies, owing to environmental changes, particle segregation or...
contamination of the spreading mechanism, serious reduction in uniformity can result. In addition, it has been shown that the basic spinner disc design is not suited for variable-rate application (Fulton et al., 2001; Parish, 2002). However, since the principle of the spinner type spreader has advantages in terms of cost, capacity and maintainability, Kweon and Grift (2006) proposed the development of a feedback-controlled spinner-type fertiliser spreader based on a time-of-flight sensor developed by Grift and Hofstee (1997). This feedback-controlled spreader will include instrumentation to measure the dynamic friction coefficient in real time.

Modelling of the spreading process has been attempted over decades by researchers, such as Patterson and Reece (1962), Inns and Reece (1962), Mennel and Reece (1963), Cunningham (1963), Cunningham and Chao (1967), Brinsfield and Hummel (1975), Pitt et al. (1982), Griffis et al. (1983), Hofstee (1995), Olieslagers et al. (1996, 1997), Aphale et al. (2003), Dintwa et al. (2004a, 2004b), Villette et al. (2005). Currently, discrete element modelling is proposed as a tool to gain better insight of the spreading process, but so far no quantitative results have been obtained (Liedekerke et al., 2005).

With the exception of discrete element modelling, the typical approach has been the development of differential equations describing particle motion along vanes (straight, pitched and curved) mounted on discs (flat and cone shaped). These models contain a parameter, representing the friction that the particle experiences during acceleration. To determine this constant for various materials, Aphale et al. (2003) and Cunningham (1963) described the measurement of the Coulomb friction coefficient using a wooden block containing fixed particles sliding along an inclined slope. Hofstee (1992) used an approach in which particles were mounted on an arm, and a spinning disc was rotating underneath it in constant contact with the particle. These methods poorly represent the complex behaviour of fertiliser particles while being accelerated under high centrifugal and Coriolis forces, influenced by the Coulomb friction coefficient between particle and vane, aerodynamic effects, bouncing effects, as well as particle size, shape and texture. To obtain more realistic values for the dynamic friction coefficient, experiments in a scenario similar to the fertiliser-spreading process are required. For instance, Villette (2005) used a machine vision approach to determine the friction angle between the radial and tangential discharge velocity components of particles that emanated from a flat disc with straight radial vanes. Although this method is indeed similar to the acceleration process on a spinner-type spreader, it is expensive, time consuming and not suitable for field application. Grift et al. (2006) determined the dynamic friction coefficient of a large number of urea fertiliser particles emanated from a flat disc with straight radial vanes on a commercial fertiliser spreader. Although this method is suitable for field application, more fundamental experiments with identical spheres would be costly and cumbersome. As a compromise, the spinning-tube method was developed which has the advantage that every particle leads to a measurement, allowing basic experimentation with spherical particles in a scenario similar to the fertiliser spreading process.

The objectives of this research are (1) to measure the dynamic friction coefficient of plastic spheres as well as two morphologically dissimilar fertilisers and (2) to assess whether the dynamic friction coefficient is related to the particle diameter as was found in previous research.

2. Materials and methods

The dynamic friction coefficient measurement principle is as follows: a deterministic model from the literature was adopted to describe the motion of a particle along the inner sidewall of a straight tube. This model contains a parameter, representing the friction (caused by a range of factors) that the particle experiences while being accelerated. After simplification, the differential equation was solved for the dynamic friction coefficient. The dynamic friction coefficient dictates the time required for a particle to move through a known distance. This time was measured for individual particles and used to infer their dynamic friction coefficient. Experiments were carried out for three materials, plastic spheres, ammonium nitrate fertiliser as well as potassium chloride fertiliser. Each material was tested at six rotational tube velocities and each test included 200 particles.

2.1. Theoretical background of dynamic friction coefficient measurement

Inns and Reece (1962) derived the differential equation for a particle sliding along a straight radial edge mounted on a disc,
while being exerted to inertia, Coriolis, centrifugal and gravity forces
\[\ddot{x} + 2 \mu \omega x - \omega^2 x = -\mu g, \tag{1} \]
where \(x \) is the distance along the edge in m as a function of time; \(\mu \) is the Coulomb friction coefficient between particle and edge material; \(\omega \) is the rotational velocity of the disc in rad s\(^{-1}\), and \(g \) is the gravitational acceleration in m s\(^{-2}\). Its absence in Eq. (1) indicates that the particle dynamics is independent of its mass. Since the downward acting gravitational force is very small compared to the horizontally acting Coriolis force, the gravity term was ignored leading to the complimentary function of Eq. (1)
\[x(t) = Ae^{\lambda t} + Be^{\kappa t}, \tag{2} \]
where \(A \) and \(B \) are integration constants and \(t \) is time in s. For convenience, the following ‘exponential coefficients’ related to the Coulomb friction coefficient were defined:
\[\kappa = -\mu + \sqrt{\mu^2 + 1}, \]
\[\lambda = -\mu - \sqrt{\mu^2 + 1}. \tag{3} \]
Since the Coulomb friction coefficient is positive definite, the second term in Eq. (2) always contains a negative exponential (\(\lambda < 0 \)), whereas the first term always contains a positive exponential (\(\kappa > 0 \)). This means that the second term vanishes quickly with time and its effect is small at a reasonable distance from the centre. In addition, since \(\lambda = -1/\kappa \) and \(0 < \kappa \leq 1 \), this implies that \(|\lambda| > |\kappa| \), which makes the contribution of the second term even smaller. An approximation of Eq. (3) is now (for clarity, the equal sign ‘=’ is used rather than ‘equal by approximation’, ‘\(\approx \)’)
\[x(t) = Ae^{\lambda t}. \tag{4} \]
In the spinning-tube design, there are two sensors along the tube located at distances \(R_1 \) and \(R_2 \) in m, where the particle passage is detected and the corresponding time difference recorded. Assuming that at time \(t_1 \) the particle passes \(R_1 \) and at time \(t_2 \) passes \(R_2 \), substitution of these in Eq. (4) yields
\[x(t_1) = R_1 = Ae^{\lambda t_1}, \tag{5} \]
\[x(t_2) = R_2 = Ae^{\lambda t_2}. \tag{6} \]
Substitution of \(A \) from Eq. (5) into (6) yields
\[R_2 = R_1 e^{\lambda \Delta t}, \tag{7} \]
where, the time difference \(\Delta t \) between \(R_1 \) and \(R_2 \) is \(t_2 - t_1 \). The fact that the constant \(A \) cancels implies that the time difference \(\Delta t \) is independent of the boundary condition (initial drop location) but depends on the rotational velocity of the disc, \(\omega \) in rad s\(^{-1}\) and the constant detection locations \(R_1, R_2 \). Solving for the exponential coefficient \(\kappa \) yields
\[\kappa = \frac{1}{\omega \Delta t} \frac{\ln(R_2/R_1)}{\Delta t}. \tag{8} \]
Since the Coulomb friction coefficient \(\mu \) is related to \(\kappa \) by definition [Eq. (3)], it can be computed:
\[\mu = \frac{1}{\kappa} \frac{1}{\k} = \frac{1}{2} \left(\frac{\omega \Delta t}{\ln(R_2/R_1)} - \frac{\ln(R_2/R_1)}{\omega \Delta t} \right). \tag{9} \]
Although not critical, the elegant choice \(R_2/R_1 = \epsilon \) simplifies Eq. (8) and (9) to
\[\kappa = \frac{1}{\omega \Delta t}, \tag{10} \]
\[\mu = \frac{1}{2} \left(\frac{1}{\kappa} - \kappa \right) = \frac{1}{2} \left(\frac{\omega \Delta t}{\ln(R_2/R_1)} - \frac{\ln(R_2/R_1)}{\omega \Delta t} \right). \tag{11} \]

2.2. Spinning-tube device

The spinning-tube device was built using a steel tube with an inside diameter of 10 mm and an outside diameter of 14 mm. In the centre, a T connection was provided, which served as a particle insertion orifice. One side of the tube was blocked, which prevented the particle from entering the side of the tube that is not instrumented. The tube was driven by an electric motor with tachometer feedback, which allowed for accurate control of the rotational velocity. For safety, the spinning-tube device was fitted in a casing with a polycarbonate cover. Fig. 1 shows a schematic of the tube and the locations of the photo-interruption sensors. Sensor 1 was fitted at 120 mm distance from the tube centre, and sensor 2 at a distance of 241 mm. A third sensor was placed close to sensor 2 at 2.3 mm distance. The time difference between the passing of sensor 1 and 2 (\(\Delta t_2 \)) was used to measure the dynamic friction coefficient. Similarly, the time difference between sensors 2 and 3 (\(\Delta t_3 \)) was used to measure the discharge velocity. The combination of (\(\Delta t_2 \)) and the total time for which the particle-blocked sensor 3 (\(\Delta t_p \)) was used to measure the diameter of the particles. All time differences were measured using the timer functions of a microcontroller, which was mounted directly on the spinning tube. Because of the limited storage capacity of the microcontroller, data were collected in series of 20 particles after which the machine was stopped and the data downloaded. To promote consistency, instead of simply dropping the particles into the tube, which was thought to introduce major variability due to bounce effects, they were picked up using a vacuum tube and placed in a small hole that was drilled at the bottom of the insertion orifice.

The infrared (940 nm) photo-interruption sensors have a protruding hemi-sphere, which was fitted precisely into 2 mm holes drilled in the side of the tube as shown in Fig. 2. The transmitters were spectrally matched light emitting diodes. Fig. 3 shows a photo of the spinning-tube device.

3. Results and discussion

3.1. Experiments with identical plastic spheres

Although the plastic spheres had a relatively constant diameter of 5.9 mm with a coefficient of variation of 1%, their measured diameters varied from approximately 5 to 6 mm as shown in Fig. 4.

This variability can be explained by assuming that the particles did not exactly follow the Coriolis force-induced straight trajectory along the sidewall of the tube, but
oscillated around it, which implies that the sensor was not always exposed to the maximum particle dimension. This effect also implies a variation in the dynamic friction coefficient measurement; a longer time difference in passing between sensors 1 and 2, was interpreted as a higher dynamic friction coefficient, whereas in reality, the particle may have followed a longer path than assumed. Fig. 4 also shows that the variability is a function of the rotational speed, the standard deviation drops from 0.08 at 300 min$^{-1}$ (a) to 0.03 at 800 min$^{-1}$ (f). This adds evidence to the conjecture of the particles not following a straight trajectory along the inner.

Fig. 1 – Timing signals generated by a particle passing through the tube. The particle is inserted and enters the unplugged side of the tube. When it interrupts the sensors, pulses are generated, which allow measuring the dynamic friction coefficient using Δt_b in s, the particle exit velocity in m s$^{-1}$ using Δt_f in s, as well as the particle diameter using a combination of Δt_p in s and Δt_f in s.

Fig. 2 – Photo-interrupter arrangement in tube to detect particle passage.

Fig. 3 – Photo of spinning-tube dynamic friction coefficient measurement device. Note the microcontroller board mounted in the centre, which spins with the tube.
sidewall of the tube: Higher rotational velocities exert larger Coriolis forces on the particles, resulting in the particles being pushed more firmly onto the sidewall thereby reducing the oscillation magnitude. Consequently, the most reliable value of the friction coefficient was considered at the highest velocity of 800 min⁻¹, being 0.25.

3.2. Experiments with potassium chloride

Experiments with potassium chloride were carried out, since this material consists mainly of flattened irregularly shaped particles with rough contours (Fig. 5).

Fig. 6 shows the measured dynamic friction coefficients of 200 potassium chloride particles again at rotational speeds ranging from 300 to 800 min⁻¹.

As in the plastic sphere case, the variability in the friction coefficients is less at higher velocities, leading to a conclusion similar to that stated in experiments with spheres: Particles are pushed more tightly onto the sidewall at higher rotational velocities. The value of the dynamic friction coefficient at the highest velocity was independent of the particle diameter being 0.44 with a standard deviation of 0.05. The latter value has to be interpreted with caution, since the oscillatory particle motion in the tube may have exaggerated the true variability as in the plastic-sphere case.

3.3. Experiments with ammonium nitrate

Ammonium nitrate is a fertiliser material, which is close to sphere as shown in Fig. 7.

Fig. 8 shows the measured dynamic friction coefficients of 200 ammonium nitrate particles at rotational speeds ranging
from 300 to 800 min$^{-1}$. The value of the dynamic friction coefficient of ammonium nitrate at the highest rotational velocity (800 min$^{-1}$) is 0.31 and this is, expected, less than potassium chloride (0.44), and higher than that of plastic spheres (0.25). The standard deviation is in agreement with those for spheres (0.03) and is less than the value for potassium chloride, 0.05.

Previous research where the dynamic friction coefficient was measured on a spinner disc fertiliser spreader, found that the particle discharge velocity was proportional to the particle diameter and, hence, the dynamic friction coefficient was inversely proportional (Grift et al., 2006). This result is not supported by the spinning-tube research where no significant relationship was found between the dynamic friction coefficient and diameter at the highest, most reliable rotational tube speeds. This implies that aerodynamic effects played a role in the previous research, since smaller particles were decelerated more during free flight than larger ones, which was incorrectly interpreted as caused by a larger dynamic friction coefficient.

Fig. 6 – Measured dynamic friction coefficients of 200 potassium chloride particles at a tube rotational speed of (a) 300 min$^{-1}$, mean 0.56, SD 0.16, CV 0.29, (b) 400 min$^{-1}$, mean 0.54, SD 0.11, CV 0.2, (c) 500 min$^{-1}$, mean 0.49, SD 0.07, CV 0.14, (d) 600 min$^{-1}$, mean 0.47, SD 0.05, CV 0.11, (e) 700 min$^{-1}$, mean 0.47, SD 0.06, CV 0.14 and (f) 800 min$^{-1}$, mean 0.44, SD 0.05, CV 0.12.

Fig. 7 – Thresholded image of ammonium nitrate particles.

A horizontally spinning-tube device that allows measuring the dynamic friction coefficient of particles was developed. Photo-interruption sensors were placed along the tube, which supplied timing information regarding particle passages from which the dynamic friction coefficients were computed using a simplified particle dynamics model. Experiments were carried out using plastic spheres, as well as ammonium nitrate and potassium chloride fertilisers.

The measured diameters and, consequently, the dynamic friction coefficients of plastic spheres showed significant variability, which led to the conjecture that particles do not exactly follow a straight trajectory along the inner sidewall of
the tube as expected, but rather, an oscillatory path around it. This conclusion was supported by the fact that the variability became progressively lower at higher rotational tube velocities. The assumed cause of the reduced variability was the higher Coriolis forces at higher rotational tube velocities, push the particles more firmly onto the inner sidewall of the tube, hence limit the oscillation magnitude. Therefore, the measured dynamic friction coefficients were considered most reliable at the highest rotational speeds (800 min\(^{-1}\)), leading to 0.25, standard deviation (SD) 0.03 for plastic spheres, 0.31, SD 0.03 for near-spherical ammonium nitrate and 0.44, SD 0.05 for irregularly shaped potassium chloride fertiliser.

Acknowledgements

The authors express their gratitude to all collaborators at CEMAGREF, Groupement de Clermont-Ferrand, Montoldre, France.

REFERENCES

Cunningham F M; Chao E Y S (1967). Design relationships for centrifugal fertiliser distributors. Transactions of the ASAE, 10(1), 91–95

Fulton J P; Shearer S A; Chabra G; Higgins S F (2001). Performance assessment and model development of a variable-rate, spinner-disc fertiliser applicator. Transactions of the ASAE, 44(5), 1071–1081

![Graphs](image-url)

