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Abstract: Machine Learning (ML) algorithms have been used as an alternative to conventional and 
geostatistical methods in digital mapping of soil attributes. An advantage of ML algorithms is their 
flexibility to use various layers of information as covariates. However, ML algorithms come in many 
variations that can make their application by end users difficult. To fill this gap, a Smart-Map plugin, 
which complements Geographic Information System QGIS Version 3, was developed using modern 
artificial intelligence (AI) tools. To generate interpolated maps, Ordinary Kriging (OK) and the Sup-
port Vector Machine (SVM) algorithm were implemented. The SVM model can use vector and raster 
layers available in QGIS as covariates at the time of interpolation. Covariates in the SVM model 
were selected based on spatial correlation measured by Moran’s Index (I’Moran). To evaluate the 
performance of the Smart-Map plugin, a case study was conducted with data of soil attributes col-
lected in an area of 75 ha, located in the central region of the state of Goiás, Brazil. Performance 
comparisons between OK and SVM were performed for sampling grids with 38, 75, and 112 sam-
pled points. R2 and RMSE were used to evaluate the performance of the methods. SVM was found 
superior to OK in the prediction of soil chemical attributes at the three sample densities tested and 
was therefore recommended for prediction of soil attributes. In this case study, soil attributes with 
R² values ranging from 0.05 to 0.83 and RMSE ranging from 0.07 to 12.01 were predicted by the 
methods tested. 

Keywords: precision agriculture; geographic information systems (GIS); geoprocessing; artificial 
intelligence; soil mapping 
 

1. Introduction 
Digital mapping of soil and plant attributes provides information allowing variable-

rate (VR) application of agricultural inputs [1]. However, the precision of the VR applica-
tion depends on precision of the maps that are obtained, typically through interpolation 
among georeferenced samples. In an economically viable sampling system, a range of in-
terpolation methods can be used, including the geostatistical method of Ordinary Kriging 
(OK), which is popular in digital soil mapping [2]. However, a disadvantage of OK is the 
need for large numbers of sampling points for semi-variance modeling [3,4]. 

Recently, with the large volume of information generated in production fields, Ma-
chine Learning (ML) techniques have been used as an alternative to OK for digital map-
ping of soil attributes [5–9]. ML algorithms attempt to discover and quantify patterns 
among available data to make predictions. Several models that use ML algorithms for 
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prediction and mapping of soil attributes have been developed [7,10,11], among which 
are Random Forest, Support Vector Machine (SVM), Cubist, K-Nearest Neighbors, and Artificial 
Neural Networks [10,12,13]. However, to implement ML models for digital mapping, it is 
necessary to master open-source programming languages such as Python (Python Soft-
ware Foundation, Wilmington, DE, USA) and R [14]. 

For the development of applications using ML, several layers of data must be avail-
able, such as environmental and climatic variables, soil and plant sensor data, satellite 
imagery, yield maps, and digital elevation models. These data can be in matrix or vector 
format, and in various spatial resolutions, which can make the implementation of the ML 
interpolation model challenging. As many of these features may have a greater or lesser 
importance in modeling, it may be necessary to use feature selection and elimination tech-
niques [13,15,16]. 

A computational tool that facilitates the use of ML techniques in digital mapping 
without requiring programming knowledge can assist users of geographic information 
systems (GIS) software. QGIS [17] is open-source software featuring a user-friendly inter-
face and an active community of developers and users. Free computer programs are avail-
able for Ordinary Kriging, such as Vesper [18], SGeMS [19], DAGApy [20], and KrigMe 
[21]. However, none of these are available as a QGIS plugin. Given the potential applica-
tion of ML and the need to integrate QGIS into a system for digital mapping of soil attrib-
utes, this study aimed to develop a plugin called Smart-Map that is integrated with QGIS 
software for digital mapping using OK and ML as interpolation methods. 

2. Materials and Methods 
Smart-Map was registered with the National Institute of Industrial Property (INPI, 

Ministry of Economy, Brazil, BR 51 2021 000002-1). Its latest version can be found on 
GitHub web site. Available online: https://github.com/gustavowillam/SmartMapPlugin 
(accessed on 25 May 2022) or installed from the QGIS plugin repository. Available online:  
https://plugins.qgis.org/plugins/Smart_Map (accessed on 25 May 2022). Python 3.7 was 
used to develop the software, being compatible with macOS, Linux, and Windows oper-
ating systems. The graphical user interface (GUI) was designed using PyQt5 (Riverbank 
Computer Limited, Dorchester, United Kingdom). The software is a plugin to QGIS ver-
sion 3.10 or higher. 

2.1. Smart-Map Implementation 
To validate the OK and ML methodology used by Smart-Map, a case study was con-

ducted, where the accuracy of the interpolation of soil attributes was compared using OK 
and ML for different sampling grids. For the OK interpolation method, the protocols and 
equations described by [22] were adopted. The developed plugin allows the user to fit five 
models of isotropic theoretical semivariograms: linear, linear with sill, exponential, spher-
ical, and Gaussian. The semivariogram model was chosen using a cross-validation 
method. 

The Support Vector Machine (SVM) method is a machine learning algorithm, devel-
oped in the 1990s and used for both regression and classification of datasets [23]. The SVM 
method was chosen for interpolation because it can handle smaller and larger volumes of 
data [24]. For most ML algorithms, it is necessary to fit hyperparameters that need to be 
chosen by the user because they depend on the data type and variation. For the SVM al-
gorithm, hyperparameters such as C and gamma (γ) were optimized using a systematic 
grid search method [25,26], enabling automated fitting. Hence, the C and gamma hy-
perparameters were optimized based on the RMSE value found during cross-validation. 
Kernel function is another important hyperparameter for SVM. For the plugin, the Radial 
Basis Function (RBF) kernel was chosen because it is a non-linear function and can be 
fitted to most of the data. 
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In addition to the generation of interpolation maps, Smart-Map can perform cluster 
analyses using the fuzzy k-means method [27], yielding Management Zones (MZ) maps. To 
define the ideal number of classes, Smart-Map calculates the FPI (Fuzzy Performance In-
dex) and NCE (Normalized Classification Entropy) indices, which are widely recom-
mended in the literature to define the appropriate number of MZs [28,29]. To execute the 
cluster process and define the MZs, the fuzzy k-means algorithm of the Scikit-Fuzzy Python 
library was implemented [30]. The flowchart of the Smart-Map plugin is shown in Figure 
1, whereas Figure 2 shows the GUI for map interpolation using OK and SVM in Smart-
Map. 

 
Figure 1. Flowchart of the main processing steps of Smart-Map. 
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Figure 2. Graphical User Interface of Smart-Map. (a) Interpolation by OK. (b) Interpolation by 
SVM. 
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2.2. Case Study for Smart-Map Plugin Evaluation 
A case study to evaluate Smart-Map was conducted in an area of 75 ha, located be-

tween the municipalities of Anápolis and Goianápolis at latitude and longitude of approx-
imately −16.274839 and −48.593840, in the central region of the state of Goiás, Brazil (Fig-
ure 3). This area is cultivated with soybean, has an average altitude of 1017 m, a flat relief 
with a soil predominantly classified as Ferralsols, based on the World Reference Base for 
Soil Resources [31]. Soil samples were collected using a regular grid with a sampling den-
sity of two points per hectare, totaling 150 composite samples. The samples were georef-
erenced with a topographic GNSS Promark 3 (Magellan Co., Santa Clara, CA, USA). Each 
composite sample comprised 10 individual samples (0 to 0.20 m depth), collected within 
a 3 m radius. Composite samples were homogenized, packed in plastic bags and identified 
using a composite sample number. Laboratory analyses were performed to measure the 
concentrations of macronutrients (P, K+, Ca2+ and Mg2+), organic matter, cation exchange 
capacity at pH 7, and particle size. Data of apparent soil electrical conductivity (ECa) were 
also collected on five dates (Eca_1 measured on 11/11/2010, Eca_2 measured on 11/23/2010, 
Eca_3 measured on 12/04/2010, Eca_4 measured on 12/13/2010 and Eca_5 measured on 
01/26/2011) using a portable conductivity meter Landviser LandMapper® ERM 02 
(Landviser LLC, League City, TX, USA). This device measures the electrical resistivity of 
the soil using four equally spaced electrodes [32]. The apparent electrical conductivity of 
the soil is obtained by 1/resistivity. The data used in the case study, were made available 
to the research community [33]. Descriptive statistics of the data are presented in Table 1. 

 
Figure 3. Geographical location of the study area and distribution of sampling points in 
Anápolis/Goianápolis, Goiás, Brazil. 

Table 1. Descriptive statistics of soil attributes in the area of study. 

Variable Unit Min Max Mean SD (17) Median CV(%) (18) 
P (1) mg dm−3 1.70 21.60 6.84 3.96 5.85 57.88 
K+ (2) mg dm−3 24.00 108.00 52.63 14.20 51.00 26.98 

Ca2+ (3) cmolc dm−3 1.90 4.20 3.27 0.46 3.30 14.04 
Mg2 +(4) cmolc dm−3 0.60 1.40 0.84 0.14 0.80 16.53 
OM (5) dag kg−1 2.50 4.30 3.06 0.30 3.10 9.85 
CEC (6) cmolc dm−3 4.20 9.90 5.95 0.86 5.90 14.41 

Altitude (7) m 987 1025 1011.2 7.63 1012.1 0.75 
Clay (8) g kg−1 26.00 44.00 33.11 3.37 33.00 10.17 
Silt (9) g kg−1 6.00 20.00 10.60 2.94 10.00 27.78 

Sand (10) g kg−1 45.00 65.00 56.28 4.41 56.50 7.84 
Eca_1 (11) mS m−1 2.49 8.36 4.92 1.01 4.83 20.62 
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Eca_2 (12) mS m−1 2.95 10.00 5.95 1.22 5.99 20.56 
Eca_3 (13) mS m−1 1.71 9.11 4.54 1.13 4.51 24.86 
Eca_4 (14) mS m−1 1.84 7.32 3.98 0.88 3.94 22.09 
Eca_5 (15) mS m−1 0.89 5.57 2.65 0.71 2.61 26.67 

Eca_Avg (16) mS m−1 2.17 8.03 4.41 0.84 4.44 19.08 
(1) P, Phosphorus; (2) K+, Potassium; (3) Ca2+, Calcium; (4) Mg2+, Magnesium; (5) OM, Organic Matter; (6) 
CEC, cation exchange capacity at pH 7; (7) Altitude; (8) Clay; (9) Silt; (10) Sand; (11) Eca_1, Apparent Soil 
Electrical conductivity measured on 11/11/2010; (12) Eca_2, Apparent Soil Electrical conductivity 
measured on 11/23/2010; (13) Eca_3, Apparent Soil Electrical conductivity measured on 12/04/2010; 
(14) Eca_4, Apparent Soil Electrical conductivity measured on 12/13/2010; (15) Eca_5, Apparent Soil 
Electrical conductivity measured on 01/26/2011; (16) Eca_Avg, Mean Value of Apparent Soil Electrical 
conductivity of Eca_1, Eca_2, Eca_3, Eca_4, Eca_5; (17) SD, Standard Deviation; (18) CV, Coefficient of 
Variation. 

2.3. Methods of Interpolation and Spatial Correlation Analysis 
In the case study, an interpolation grid of 10 m × 10 m was defined to perform inter-

polation by OK and SVM. To interpolate each point of the grid using OK, the search radius 
was defined equal to the range obtained by the theoretical semivariogram; the maximum 
number of neighbors was defined as 16. For interpolation by OK, Smart-Map uses the Py-
thon open-source PyKrige library [34]. The PyKrige library performs the interpolation us-
ing the k-nearest neighbors method. The library was adapted to also accept the search 
radius. Interpolation was performed using the k-nearest neighbors method or using a 
neighborhood search radius, selected by the user. 

For interpolation by SVM, a supervised learning model, available in the open-source 
Scikit-Learn Python library, was implemented [35]. For modeling, it is necessary to con-
struct the X matrix and y vector. The X matrix is composed of columns with the features 
(covariates) and rows, which are the soil samples. In the X matrix, the geographic coordi-
nates x and y of the point to be interpolated were added as features. In addition to geo-
graphic coordinates, other features, including the feature of the variable itself, were added 
in the X matrix. In this case, the feature is created based on the calculation of the Inverse 
Distance Weighting (IDW) of the nearest neighbors to the point to be interpolated. The y 
vector was composed of the observed (true) values of each soil attribute to be interpolated. 
In this case study, the attributes P, K+, Ca2+, and Mg2+ were interpolated variables. Thus, 
the observed value obtained for the point is part of the y vector and is not used for feature 
creation, rather merely the IDW of neighbors of the point were considered. In addition, 
Smart-Map allows the use of data from other layers in the QGIS database (vector or raster) 
as features. 

In the case study, two methods of modeling by SVM were used, which were termed 
as SVM1 and SVM2. For the SVM1 method, the geographic coordinates (x and y) and the 
value of the variable itself, which was estimated using the IDW interpolation method, 
were used as features. In SVM2, those features that were more correlated with the variable 
to be interpolated were used as covariates, in addition to the geographic coordinates (x 
and y) and the value of the variable itself, interpolated using IDW. The selection of covari-
ates was made based on the spatial correlation of Moran’s Index (I’Moran), one of the 
most popular indices for evaluation of spatial correlation [36] of regionalized variables. 
The univariate I’Moran was used to compare the degree of correlation of the variable itself 
in different distance spaces (spatial autocorrelation). The univariate I’Moran measures the 
autocorrelation of the variable to be interpolated. This index was used as an indicator of 
the spatial dependence of each attribute [37]. A univariate I’Moran value equal to zero 
means that the variable under study does not show spatial correlation. The closer the 
value is to 1 or −1, the greater the autocorrelation, that is, the greater the spatial correlation 
of the variable [6,38]. Univariate I’Moran was calculated according to Equation (1) [39]. 
The bivariate I’Moran was used to measure the spatial correlation between the available 
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covariates such as CEC, OM, Altitude, Clay, Silt, Sand, and ECa, with the attribute that 
was interpolated. Its value was calculated according to Equation (2) [40]. 

𝐼𝐼 =  
𝑛𝑛
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where: 𝑛𝑛 is the number of observations in the area under study; 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 represent the ob-
served values of the soil attributes to be interpolated at the points i, j; 𝑦𝑦𝑖𝑖 ,𝑦𝑦𝑗𝑗 represent the 
observed values of the selected covariate at the points i, j; 𝑥̅𝑥 is the average of x; 𝑦𝑦� is the 
average of y; 𝑤𝑤𝑖𝑖𝑖𝑖 are the elements of the matrix of spatial weights with value 0 on the 
diagonal (wii = 0). 

The optimal subset of covariates for the SVM2 method was selected considering the 
bivariate I’Moran. Covariates that showed greater spatial correlation with the variable to 
be interpolated were added to the SVM2 method. To verify the significance of I’Moran, 
the pseudo p-value was obtained from 999 permutations between the points of the sam-
pling grid at 1% and 5% probability levels. For the calculation of I’Moran, Smart-map used 
the PySAL open-source Python library [41]. 

2.4. Generation of Scenarios and Performance Criteria for Comparison between  
Interpolation Methods 

To compare the performance of the OK method and the SVM models (SVM1 and 
SVM2) at various sampling densities, the regular grid of 150 points in the area was re-
duced to grids with lower densities (25%, 50%, and 75%). Three grids were obtained with 
38, 75, and 112 points, respectively. These points were used for semivariogram modeling 
in the OK method and definition of the training set in the SVM model, whereas the re-
maining points were used for verification of the accuracy of the prediction. Figure 4a 
shows the original grid with 150 points and the reduced grids composed of modeling and 
testing data. In the grid with 38 points (Figure 4b), 38 points were used for modeling and 
112 points for testing. In the grid with 75 points (Figure 4c), 75 points were used for mod-
eling and 75 points were used for testing. In the grid with 112 points (Figure 4d), 112 
points were used for modeling and 38 points were used for testing. 

From the reduction of the sampling grid, interpolated maps were generated using 
the sets of training points for the OK method and the SVM model at the three densities of 
sampling grids. In this case study, the attributes P, K+, Ca2+, and Mg2+ were interpolated. 
For modeling, the SVM method requires the adjustment of two hyperparameters, C and 
gamma. K-fold cross-validation was used to obtain optimal values of these hyperparame-
ters. Validation with 5-folds was used to optimize the model in the selection of the best 
hyperparameters using the training dataset. The leave-one-out cross-validation (LOOCV) 
[42] method was used to measure the performance of the implemented methods. LOOCV 
consists of using all data and leaving one data point out and has been widely used due to 
its mathematical simplicity. The outside point is then interpolated by one of the interpo-
lation methods [43]. This strategy was applied to all samples in the set. As the actual val-
ues of the set are known, the Coefficient of Determination (R2) and RMSE values of the 
LOOCV were calculated. The R2 and the RMSE of predicted and observed data of LOOCV 
were calculated for each model and for each interpolated attribute. The test sets were used 
to calculate the R2 and RMSE of each map obtained by interpolation of P, K+, Ca2+ and Mg2+, 
after modeling. For this, the interpolated values of P, K+, Ca2+ and Mg 2+ were extracted 
from the same places where the test points were located. R2 and RMSE were calculated 
using Equations (3) and (4), for P, K+, Ca2+, and Mg2+ for the various sampling grids. 
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where: 𝑥𝑥𝑘𝑘� represents the estimated value of the soil attribute at the point k; 𝑥̅𝑥 is the aver-
age of the n sampled points of the soil attribute; 𝑥𝑥𝑘𝑘 is the observed value of the soil attrib-
ute at the point k; and 𝑛𝑛 is the number of points sampled. 

 
Figure 4. Number of sampling points in: (a) original grid with 150 points; (b) 38 points for training 
and 112 points for testing; (c) 75 points for training and 75 points for testing; (d) 112 points for train-
ing and 38 points for testing. 
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2.5. Definition and Selection of Features for the SVM Model 
To define the features to be inserted in the SVM model, the user defines the Inverse 

Distance Weighting (IDW) parameters such as the weighting value (p), the search radius, 
and the number of neighbors (n) to consider for calculating the feature for the X matrix. 
In the case study, a search radius equal to the maximum distance between the sampled 
points was used, the number of neighbors was equal to 16 and a weight (p) equal to unity 
were used as default values. 

Figure 5a shows a selection of the 16 closest neighbors to the point where the user 
wishes to estimate the attribute value using the IDW method of the selected attribute of 
the QGIS layer (target_A). Figure 5b shows how the ML model for the SVM1 and SVM2 
methods was constructed divided into features (X matrix) and variable to be interpolated 
(y vector). Each row of the training data represents a sample of the grid. In the X matrix, 
coordX and coordY are the x and y coordinates of the sampled point, respectively; idwA 
represents the estimated value for the variable based on IDW using the 16 neighbors clos-
est to the sampled point of the attribute to be interpolated; idw_At1, idw_At2, idw_Atn 
represent the estimated value based on IDW using the 16 neighbors closest to the sampled 
point of the selected features. In the y vector, target_A represents the sampled values of the 
attribute to be interpolated, which were P, K+, Ca2+, and Mg2+. 

 
Figure 5. Construction of the ML model. (a) Selection of the 16 closest neighbors to the point where 
the user wishes to estimate the attribute value using the IDW method. (b) Definition of the ML 
model (Train_Features) for the methods SVM1 and SVM2: features (X matrix) and target (y vector). 
(c) SVM model trained for the methods SVM1 and SVM2. (d) Map interpolated from the test set. 

For SVM1, the features consisted of the coordinates (coordX and coordY) of the point 
and the IDW value of the variable (y) using the 16 neighbors closest to the sampled point, 
within the defined search radius of the attribute to be estimated. The variable to be inter-
polated (y) represents the observed soil attribute, for which the user wishes to predict its 
values at unsampled locations. In this case study, the variables are P, K+, Ca2+ and Mg2+. 

In the second approach (SVM2), the features were the coordinates (coordX and coordY), 
and the IDW of 12 covariates available in the study area: OM, CEC, Altitude, Clay, Silt, 
Sand, ECa_1, ECa_2, ECa_3, ECa_4, ECa_5, and ECa_Avg. In this case, the features used 
originated from the original grid with 150 points. This was done because the goal of using 
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the SVM is to take advantage of information that has been densely sampled in the area. 
These data can be obtained by sensors or comprise quasi-static information. 

The R2 accuracy metric of the LOOCV cross-validation was applied for each subset of 
covariate added. The subset of covariates that had the best value of R2 was chosen to de-
fine the SVM model to be used for the variable to be interpolated. This selection was per-
formed considering all features for grids with 38, 75, and 112 sampling points. The final 
trained SVM model was obtained after performing the LOOCV of all points of the training 
set (Figure 5c). With the trained model, the interpolation of soil variables (P, K+, Ca2+, and 
Mg2+) was performed, thus obtaining the interpolated map for the attribute (Figure 5d). 

3. Results and Discussion 
In this section we discuss the results of the spatial correlation obtained through the 

I’Moran method between the covariates used by the SVM1 and SVM2 methods and the 
interpolated variables (P, K+, Ca2+, and Mg2+). In addition, a performance comparison be-
tween the OK and SVM methods is discussed. The OK and SVM1 methods used only the 
estimated value of the variable to be interpolated as an input feature for the model. The 
SVM2 method used, in addition to the estimated value of the variable, the covariates with 
the highest spatial correlation with the variable to be interpolated as input for the model. 

3.1. Spatial Correlation and Selection of Covariates for the SVM Model 
For spatial correlation analysis at the three densities of sampling grid, bivariate I’Mo-

ran was used to measure the correlation between the contents of the macronutrients P, K+, 
Ca2+, and Mg2+ and the covariates with highest temporal stability (CEC, OM, Altitude, 
Clay, Silt, Sand, ECa_1, ECa_2, ECa_3, ECa_4, ECa_5, ECa_Avg). Figure 6 shows the val-
ues of univariate I’Moran for the variables to be interpolated (P, K+, Ca2+, and Mg2+) and 
bivariate I’Moran between the variables to be interpolated and the covariates with greatest 
temporal stability for the sampling densities of 38, 75, and 112 points. 

Figure 6 shows that apparent soil electrical conductivity (ECa) measured on five 
dates showed a significant positive correlation with the attributes Mg2+ and Ca2+, with val-
ues ranging from 0.12 (between Ca2+ and ECa_4, grid of 75 points) to 0.61 (between Mg2+ 
and ECa_Avg, grid of 38 points). For the interpolation of these two soil attributes, ECa 
was used as a covariate in the SVM2 method at the three densities of sampling grids (Fig-
ure 6). In the grid of 38 sampling points (Figure 6a), the covariates ECa_1 for the attributes 
Mg2+ and Ca2+ and CEC for Ca2+ were used. In the grid with 75 points (Figure 6b), ECa_Avg 
was used for the Mg2+ attribute and ECa_1 was used for the Ca2+ attribute. Finally, in the 
grid with 112 sampling points (Figure 6c), the attributes OM and ECa_1 for Mg2+ and 
ECa_Avg for Ca2+ were used as interpolation covariates. 

ECa showed low correlations with the attributes P and K+, implying a lower potential 
for use as covariates to interpolate P and K+. ECa_4 was used to interpolate only the P 
attribute in the grid with 38 points, since the correlation was significant with I’Moran of 
−0.18 (Figure 6a). For the same grid, CEC was used as a covariate for the K+ attribute. For 
the grid with 75 points (Figure 6b), the covariates CEC and OM were used for the K+ at-
tribute and the covariate Altitude was used for the P attribute. According to Figure 6b, 
Altitude presented the highest spatial correction of I’Moran with attribute P, 0.19 and p-
value ≤ 0.05, as well as attribute Sand. However, only Altitude was used because pre-
sented the best score in LOOCV. For the grid with 112 points (Figure 6c), the K+ attribute 
used the covariates CEC, OM, and Altitude, and the P attribute used Sand as covariate for 
interpolation. 
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Figure 6. Univariate Global Moran’s Index for the soil attributes P, K+, Ca2+, and Mg2+ and bivariate 
Moran’s Index among soil attributes P, K+, Ca2+, and Mg2+ and covariates for the sampling grids of 
the training set with: (a) 38 points; (b) 75 points; (c) 112 points. *, ** indicating significance at 0.05 
and 0.01 levels, respectively. *** covariates were used by the SVM2 method to interpolate the soil 
attributes P, K+, Ca2+, and Mg2+. 

3.2. Comparison between OK and SVM Methods 
For the training set, at three different densities of sampling grids, the values of R2 

(Figure 7) show that the SVM2 method was superior for the four soil attributes analyzed 
(P, K+, Ca2+, and Mg2+), except for K+ in the grid with 75 points. The univariate I’Moran for 
the K+ attribute was 0.72 and significant at a 1% probability level in the grid with 75 points, 
as shown in Figure 6b. Values of R2 for the SVM2 method in the training set ranged from 
0.16 to 0.38. Compared to the SVM1 method, the SMV2 method obtained a higher R2 for 
all attributes analyzed in all point densities of the sampling grids. 
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OK showed the lowest coefficients of determination values for the attributes P, K+, 
and Ca2+ in the grid with 38 points (Figure 7). The values of univariate I’Moran for P and 
K+ were low and not significant for the two soil attributes analyzed (Figure 6a). As men-
tioned by [2,3], OK requires a minimum number of sampling points for good semivario-
gram modeling. For the grid with 38 points, the SVM2 method performed better than the 
OK method, with R2 values ranging from 0.19 to 0.38. For the P attribute, the three meth-
ods had the lowest values of R2. These data corroborate Figure 6, in which the values of 
univariate and bivariate I’Moran were low for the P attribute. In general, OK, SVM1, and 
SVM2 showed lower R² values for the grid of 38 sampling points, compared to grids with 
higher sampling density. 

 
Figure 7. Coefficient of Determination (R2) calculated for the attributes P, K+, Ca2+, and Mg2+ among 
three sampling grids for the training set. 

As in the training set, the values of R2 were also higher for the SVM2 method in the 
test set (Figure 8). The lowest correlation coefficient for the SVM2 method was obtained 
for the P attribute in the sampling grid with 38 points in the test set (R2 = 0.15). The low 
performance of SVM2 for predicting the P attribute is related to the covariate added to the 
grid with 112 points in the training set. The Sand covariate used by the SVM2 method had 
bivariate I’Moran of 0.14 with the P attribute (Figure 6c). This value was the lowest used 
by a covariate added to the SVM2 method. Covariates that have low value of bivariate 
I’Moran with the attribute to be interpolated may not contribute or contribute in a non-
significant way to a better performance of the SVM2 method. [16] claim that the low cor-
relation between predictor variables and the dependent variable (y) directly impacts the 
performance of the ML model. 
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Figure 8. Coefficient of Determination (R2) calculated for the attributes P, K+, Ca2+, and Mg2+ among 
three sampling grids for the test set. 

The RMSE values for the soil attributes P, K+, Ca2+, and Mg2+, for the OK, SVM1, and 
SVM2 methods are shown in Tables 2 and 3 for the training and test sets, respectively. In 
Table 2 the training sets with 38, 75, and 112 points were displayed, while in Table 3 their 
respective test sets are 112, 75, and 38 points, in this order, thus totaling 150 sampled 
points divided between training and testing. As expected, the RMSE values tended to be 
lower for greater values of R2 for the training set (Figure 7 and Table 2) and for the test set 
(Figure 8 and Table 3). Similar results have been observed in other studies [5,15]. With 
lower RMSE values (Table 2), it can be inferred that OK was superior to SVM1 in the pre-
diction of P, as the R2 was similar (R2 = 0.11 and 0.15 in the grids of 75 and 112 points, 
respectively) as shown in Figure 7. 

Table 2. RMSE values found for P, K+, Ca2+, and Mg2+ for the sampling grids with grid of 38, 75, and 
112 sampling points for the training set. 

Density 38 Samples 75 Samples 112 Samples 
Variable * OK SVM1 SVM2 OK SVM1 SVM2 OK SVM1 SVM2 

P 3.24 2.92 2.85 2.91 3.19 2.80 3.36 3.47 3.32 
K+ 11.57 10.87 8.94 8.73 9.21 9.03 10.33 10.27 10.09 

Ca2+ 0.46 0.42 0.40 0.40 0.40 0.38 0.40 0.40 0.39 
Mg2+ 0.12 0.12 0.11 0.10 0.10 0.10 0.11 0.10 0.10 

* P, K+ in (mg dm−3), and Ca2+, Mg2+ in (cmolc dm−3). 
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Table 3. RMSE values found for P, K+, Ca2+, and Mg2+ for sampling grids with density of 112, 75, and 
38 sampling points for the test set. 

Density 112 Samples 75 Samples 38 Samples 
Variable * OK SVM1 SVM2 OK SVM1 SVM2 OK SVM1 SVM2 

P 3.40 3.36 3.22 3.59 3.04 2.74 2.75 1.94 2.79 
K+ 9.74 10.05 9.70 12.01 11.77 11.41 9.04 9.46 8.14 

Ca2+ 0.41 0.29 0.28 0.41 0.26 0.25 0.41 0.24 0.23 
Mg2+ 0.11 0.11 0.07 0.12 0.10 0.10 0.15 0.14 0.10 

* P, K+ in (mg dm−3), and Ca2+, Mg2+ in (cmolc dm−3). 

3.3. Maps of Soil Attributes 
The maps of soil attributes were generated using the samples selected from the train-

ing sets with 38, 75, and 112 sampling points, as shown in Figure 4. The set of 150 points 
was also used to perform interpolation and obtain interpolated maps. The attributes P, K+, 
Ca2+, and Mg2+ were interpolated using the methods OK, SVM1, and SVM2, obtaining 
maps with four densities of points. To obtain the maps, a grid with 10 m × 10 m cells was 
used, totaling 7388 interpolated points. Each interpolated attribute showed a different pat-
tern of spatial variability (Figures 9–12). This may be associated with the characteristics of 
mobility of the attribute in soil, relief shape, soil formation and soil management over 
time. 

The RMSE shown in Table 3 can be interpreted as the interpolation error for each 
map obtained by interpolation in each density of the sampling grid and for each soil at-
tribute. This error was calculated based on the test set, because the values of the maps 
obtained by interpolation of P, K+, Ca2+, and Mg2+ were extracted in the same places where 
the test points were located, thus calculating the RMSE between the value predicted by 
the method and the value observed in the test set. 

For the maps obtained by interpolation of the P attribute in the grid with 38 sampling 
points of the training set (Figure 9(a.1–c.1)), the SVM2 method had the lowest error (RMSE 
= 3.22 mg/dm3), considering the test set of 112 points, according to Table 3. For the grid 
with a density of 75 sampling points in the training and test set (Figure 9(a.2–c.2)), SVM2 
also had the lowest RMSE (2.74 mg/dm3), followed by SVM1 and OK (Table 3). For the 
grid with a density of 112 sampling points in the training set (Figure 9(a.3–c.3)) and 38 test 
points, the map obtained by interpolation through the SVM1 method showed the lowest 
RMSE (1.94 mg/dm3), followed by OK. SVM2 had the highest error (RMSE = 2.79 mg/dm3). 
For the map obtained by interpolation in the grid with 150 sampling points of the training 
set, it was not possible to calculate the error, since no observed points were separated for 
the test set. For this density, the highest P contents are distributed in the central part of 
the map (Figure 9(a.4–c.4)). 
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Figure 9. Maps obtained by interpolation of Phosphorus (P): (a) OK, (b) SVM1, (c) SVM2; Set of 
points (training): 38 (a.1–c.1), 75 (a.2–c.2), 112 (a.3–c.3), and 150 points (a.4–c.4). 

For the maps obtained by interpolation of the K+ attribute in grids with 38 (Figure 
10(a.1–c.1)), 75 (Figure 10(a.2–c.2)), and 112 (Figure 10(a.3–c.3)) samples of the training set, 
the SVM2 method had the lowest error, followed by OK in sets with 38 and 112 points and 
by SVM1 in the set of 75 points (Table 3). For the map obtained by interpolation in the grid 
of 150 points, the highest concentrations of K+ are located in the east and west parts of the 
map (Figure 10(a.4–c.4)). 
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Figure 10. Maps obtained by interpolation of Potassium (K+): (a) OK, (b) SVM1, (c) SVM2; Set of 
points (training): 38 (a.1–c.1), 75 (a.2–c.2), 112 points (a.3–c.3), and 150 points (a.4–c.4). 

The SVM2 method obtained the lowest interpolation error in the three densities of 
sampling grids, followed by SVM1 and OK for the Ca2+ attribute, as shown in Table 3. For 
the grid with density of 150 sampling points, Ca2+ had higher values in the north and cen-
ter parts of the study area (Figure 11(a.4–c.4)) for the three interpolation methods. 
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Figure 11. Maps obtained by interpolation of Calcium (Ca2+): (a) OK, (b) SVM1, (c) SVM2; Set of 
points (training): 38 (a.1–c.1), 75 (a.2–c.2), 112 points (a.3–c.3), and 150 points (a.4–c.4). 

The Mg2+ attribute, as observed for Ca2+ and K+, had the lowest error for maps ob-
tained by interpolation through the SVM2 method. In the grid of 75 sampling points for 
the training and test set (Figure 12(a.2–c.2)), the SVM1 and SVM2 methods obtained the 
same error (RMSE = 0.10 cmolc/dm3). As the R2 value of SVM2 (0.47) was higher than the 
R2 in SVM1 (0.41) according to Figure 8, implying that the performance of SVM2 was better 
than that of SVM1. The same occurred for the grid with 38 points of the training set (Figure 
12(a.1–c.1)) and the grid with 112 samples in the test set, as the error of the OK and SVM1 
methods was 0.11 cmolc/dm3. OK was superior because it had higher R2 values (Figure 8). 
For the grid with 150 sampling points, the map obtained by interpolation showed spatial 
behavior with the highest values concentrated in the northern part of the area (Figure 
12(a.4–c.4)). 
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Figure 12. Maps obtained by interpolation of Magnesium (Mg2+): (a) OK, (b) SVM1, (c) SVM2; Set of 
points (training): 38 (a.1–c.1), 75 (a.2–c.2), 112 points (a.3–c.3), and 150 points (a.4–c.4). 

3.4. Limitations and Future Developments 
Smart-Map is a QGIS plugin, allowing generation of interpolated soil attribute maps. 

A limitation of the plugin is that the maximum number of sampling points in the input 
layer is limited to 1000; for grids exceeding this limit, the plugin resamples the data based 
on the neighborhood of the sampled points. Another limitation is that only Ordinary 
Kriging and Support Vector Machine methods are implemented. Although both methods 
allow for generation of high-quality maps covering a wide range of applications, they do 
not necessarily perform well in any conceivable application. In addition, to evaluate the 
models, only RMSE and R2 metrics were used based on Leave-one-out cross-validation; 
however, for certain applications there are more appropriate metrics. 

Future extension of the plugin comprises implementation of Co-Kriging and other 
Machine Learning models such as Cubist, XGBoost, and LightGBM. Techniques for select-
ing features that are not based on spatial correlation such as Recursive Feature Elimination 
(RFE) will be implemented as well. Finally, model evaluation metrics such as EAM (Mean 
Absolute Error), RPD (Relative Difference Percentage) and cross-validation techniques such 
as K-fold and Holdout will be implemented. 
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4. Conclusions 
Techniques for digital mapping of soil attributes were implemented using Ordinary 

Kriging (OK) and the Machine Learning (ML) Support Vector Machine (SVM) algorithm 
coded in a Smart-Map plugin for QGIS. Machine Learning interpolation allowed data from 
the QGIS database layers of raster- and vector-type to be used as covariates in the inter-
polation. The maps generated by the plugin can be exported to QGIS in a shapefile and/or 
raster format. 

In a case study used to evaluate the performance of the Smart-Map plugin, interpola-
tion was compared using three methods being Ordinary Kriging (OK), a machine learning 
Support Vector Machine method that uses the attribute itself interpolated by Inverse Dis-
tance Weighting (IDW) as covariate (SVM1), and with the use of covariates (SVM2). Con-
clusions are as follows: 
(1) The SVM2 method was superior to other models in the prediction of soil chemical 

attributes for the three densities of points in the sampling grids. The R2 values were 
higher in 11 of the 12 combinations among the four soil attributes interpolated in 
three densities of points of the sampling grids, considering the training set. 

(2) Considering the RMSE of the test set, SVM2 had the lowest error for the prediction 
of maps obtained by interpolation for the four soil attributes in the three sampling 
densities, except for the P attribute in the SVM1 method with a grid of 38 points in 
the test set. 

(3) One difficulty encountered by ML algorithms for problems of mapping and predic-
tion of soil attributes is to handle the excessive number of covariates in the model. 
Spatial correlation of I’Moran proved to be efficient for the selection of covariates of 
greater importance in the model. 

(4) In areas with low spatial correlation of soil attributes and few sampled points, ML 
techniques are an alternative to the OK method, especially when covariates with a 
higher number of points and a significant level of correlation with the variables to be 
interpolated are available. The results in this study confirmed the feasibility and ap-
plicability of ML techniques, especially the “Support Vector Machine” method, for 
prediction and mapping of soil chemical attributes on a regional scale. 

(5) The developed Smart-Map plugin is available for download on the GitHub website. 
Available online: https://github.com/gustavowillam/SmartMapPlugin (accessed on 
25 May 2022) and in the QGIS plugin repository Available online: 
https://plugins.qgis.org/plugins/Smart_Map (accessed on 25 May 2022). With a user-
friendly and easy-to-use interface, Smart-Map has over 15,000 downloads according 
to the QGIS plugin repository. Information on how to use and obtain the software 
can be found in the "Supplementary Materials" section. 

Supplementary Materials: The following supporting information can be downloaded at: GitHub 
website (https://github.com/gustavowillam/SmartMapPlugin) and in the QGIS plugin repository 
(https://plugins.qgis.org/plugins/Smart_Map). 

Author Contributions: Conceptualization, G.P. and D.V.; formal analysis, G.P., D.V., and D.Q.; data 
curation, M.C.; writing, G.P., D.V., and D.Q.; review and editing, G.P., D.V., D.Q., A.C., M.C., and 
T.G.; supervision, D.V. and D.Q. All authors have read and agreed to the published version of the 
manuscript. 

Funding: This research was financially supported by CAPES (Coordination for the Improvement of 
Higher Education Personnel), Finance Code 001. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Derived data supporting the findings of this study are available from 
the corresponding author D.V. on request. 



Agronomy 2022, 12, 1350 20 of 21 
 

 

Acknowledgments: This work has been supported by CNPq (National Council for Scientific and 
Technological Development of Brazil) and CAPES (Coordination for the Improvement of Higher 
Education Personnel—Finance Code 001) for supporting this work. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Malla, R.; Shrestha, S.; Khadka, D.; Bam, C.R. Soil fertility mapping and assessment of the spatial distribution of Sarlahi district, 

Nepal. Am. J. Agric. Sci. 2020, 7, 8–16. 
2. Veronesi, F.; Schillaci, C. Comparison between geostatistical and machine learning models as predictors of topsoil organic car-

bon with a focus on local uncertainty estimation. Ecol. Indic. 2019, 101, 1032–1044. https://doi.org/10.1016/j.ecolind.2019.02.026. 
3. Pouladi, N.; Møller, A.B.; Tabatabai, S.; Greve, M.H. Mapping soil organic matter contents at field level with cubist, random 

forest and kriging. Geoderma 2019, 342, 85–92. https://doi.org/10.1016/j.geoderma.2019.02.019. 
4. Webster, R.; Oliver, M.A. Sample adequately to estimate variograms of soil properties. J. Soil Sci. 1992, 43, 177–192. 

https://doi.org/10.5771/0038-6073-2013-1-2-191. 
5. da Matta Campbell, P.M.; Francelino, M.R.; Filho, E.I.F.; de Azevedo Rocha, P.; de Azevedo, B.C. Digital mapping of soil attrib-

utes using machine learning. Rev. Cienc. Agron. 2019, 50, 519–528. https://doi.org/10.5935/1806-6690.20190061. 
6. Guo, P.T.; Li, M.F.; Luo, W.; Tang, Q.F.; Liu, Z.W.; Lin, Z.M. Digital mapping of soil organic matter for rubber plantation at 

regional scale: An application of random forest plus residuals kriging approach. Geoderma 2015, 237–238, 49–59. 
https://doi.org/10.1016/j.geoderma.2014.08.009. 

7. Hengl, T.; Nussbaum, M.; Wright, M.N.; Heuvelink, G.B.M.; Gräler, B. Random forest as a generic framework for predictive 
modeling of spatial and spatio-temporal variables. PeerJ 2018, 6, e5518. https://doi.org/10.7717/peerj.5518. 

8. Heung, B.; Ho, H.C.; Zhang, J.; Knudby, A.; Bulmer, C.E.; Schmidt, M.G. An overview and comparison of machine-learning 
techniques for classification purposes in digital soil mapping. Geoderma 2016, 265, 62–77. https://doi.org/10.1016/j.ge-
oderma.2015.11.014. 

9. Sekulić, A.; Kilibarda, M.; Heuvelink, G.B.M.; Nikolić, M.; Bajat, B. Random forest spatial interpolation. Remote Sens. 2020, 12, 
1–29. https://doi.org/10.3390/rs12101687. 

10. Khaledian, Y.; Miller, B.A. Selecting appropriate machine learning methods for digital soil mapping. Appl. Math. Model. 2020, 
81, 401–418. https://doi.org/10.1016/j.apm.2019.12.016. 

11. Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 1–29. 
https://doi.org/10.3390/s18082674. 

12. Meier, M.; de Souza, E.; Francelino, M.R.; Fernandes Filho, E.I.; Schaefer, C.E.G.R. Digital soil mapping using machine learning 
algorithms in a tropical mountainous area. Rev. Bras. de Ciência do Solo 2018, 42, 1–22. 
https://doi.org/10.1590/18069657rbcs20170421. 

13. Parmley, K.A.; Higgins, R.H.; Ganapathysubramanian, B.; Sarkar, S.; Singh, A.K. Machine learning approach for prescriptive 
plant breeding. Sci. Rep. 2019, 9, 17132. https://doi.org/10.1038/s41598-019-53451-4. 

14. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, 
Austria. 2020. Available online: http://www.r-project.org/ 2020 (accessed on 25 May 2022). 

15. Gomes, L.C.; Faria, R.M.; de Souza, E.; Veloso, G.V.; Schaefer, C.E.G.R.; Filho, E.I.F. Modelling and mapping soil organic carbon 
stocks in Brazil. Geoderma 2019, 340, 337–350. https://doi.org/10.1016/j.geoderma.2019.01.007. 

16. Gregorutti, B.; Michel, B.; Saint-Pierre, P. Correlation and variable importance in random forests. Stat. Comput. 2017, 27, 659–
678. https://doi.org/10.1007/s11222-016-9646-1. 

17. QGIS Development Team QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available in: 
http://qgis.org (accessed on 25 May 2020).  2020. 

18. Whelan, B.M.; McBratney, A.B.; Minasny, B. VESPER 1.5-spatial prediction software for precision agriculture. In Proceedings 
of the 6th International Conference on Precision on Agriculture, ASA/CSSA/SSSA, Madison, WI, USA. Vol. 179. 2002; pp. 1–14. 

19. Remy, N.; Boucher, A.; Wu, J. Applied Geostatistics with SGeMS: A User's Guide; Cambridge University Press, Cambridge, UK, 
2009. https://doi.org/10.1017/cbo9781139150019. 

20. Coelho, A.L.F.; Queiroz, D.M.; Valente, D.S.M.; Pinto, F.D.A.D.C. An open-source spatial analysis system for embedded sys-
tems. Comput. Electron. Agric. 2018, 154, 289–295. https://doi.org/10.1016/j.compag.2018.09.019. 

21. Valente, D.S.M.; Queiroz, D.M.; Pinto, F.D.A.D.C.; Santos, N.T.; Santos, F.L. Definition of management zones in coffee produc-
tion fields based on apparent soil electrical conductivity. Sci. Agric. 2012, 69, 173–179. https://doi.org/10.1590/s0103-
90162012000300001. 

22. Isaaks, E.H.; Srivastava, R.M. An Introduction to Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989. 
23. Zhou, X.; Zhang, X.; Wang, B. Online support vector machine: A survey. Adv. Intell. Syst. Comput. 2016, 382, 269–278. 

https://doi.org/10.1007/978-3-662-47926-1_26. 
24. Karamizadeh, S.; Abdullah, S.M.; Halimi, M.; Shayan, J.; Rajabi, M.J. Advantage and drawback of support vector machine func-

tionality. In Proceedings of the 2014 International Conference on Computer, Communications and Control Technology (I4CT), 
Held 2-4 September, Langkawi, Malaysia, 2014; pp. 63–65. https://doi.org/10.1109/I4CT.2014.6914146. 



Agronomy 2022, 12, 1350 21 of 21 
 

 

25. Keskin, H.; Grunwald, S.; Harris, W.G. Digital mapping of soil carbon fractions with machine learning. Geoderma 2019, 339, 40–
58. https://doi.org/10.1016/j.geoderma.2018.12.037. 

26. Xu, S.; Zhao, Y.; Wang, M.; Shi, X. Comparison of multivariate methods for estimating selected soil properties from intact soil 
cores of paddy fields by Vis–NIR spectroscopy. Geoderma 2018, 310, 29–43. https://doi.org/10.1016/j.geoderma.2017.09.013. 

27. Bezdek, J.C.; Ehrlich, R.; Full, W. FCM: The fuzzy c-means clustering algorithm. Comput. Geosci. 1984, 10, 191–203. 
https://doi.org/10.1016/0098-3004(84)90020-7. 

28. Albornoz, E.M.; Kemerer, A.C.; Galarza, R.; Mastaglia, N.; Melchiori, R.; Martínez, C.E. Development and evaluation of an auto-
matic software for management zone delineation. Precis. Agric. 2018, 19, 463–476. https://doi.org/10.1007/s11119-017-9530-9. 

29. Chen, S.; Wang, S.; Shukla, M.K.; Wu, D.; Guo, X.; Li, D.; Du, T. Delineation of management zones and optimization of irrigation 
scheduling to improve irrigation water productivity and revenue in a farmland of northwest China. Precis. Agric. 2019, 21, 655–
677. https://doi.org/10.1007/s11119-019-09688-0. 

30. Warner, J.; Sexauer, J.; Unnikrishnan, A. JDWarner/Scikit-Fuzzy: Scikit-Fuzzy, version 0.4.2; Available in: https://scikit-
fuzzy.github.io/scikit-fuzzy/ (accessed on 18 July 2019). 

31. WRB-IUSS World Reference Base for Soil Resources 2014, update 2015: International soil classification system for naming soils 
and creating legends for soil maps. World Soil Resource. Report. 2015, 106, 1–191. 

32. Calamita, G.; Brocca, L.; Perrone, A.; Piscitelli, S.; Lapenna, V.; Melone, F.; Moramarco, T. Electrical resistivity and TDR methods 
for soil moisture estimation in Central Italy Test-Sites. J. Hydrol. 2012, 454–455, 101–112. https://doi.org/10.1016/j.jhy-
drol.2012.06.001. 

33. Costa, M.M.; de Queiroz, D.M.; Pinto, F.D.A.D.C.; dos Reis, E.F.; Santos, N.T. Moisture content effect in the relationship between 
apparent electrical conductivity and soil attributes. Acta Sci. Agron. 2014, 36, 395–401. https://doi.org/10.4025/actascia-
gron.v36i4.18342. 

34. Muphy, B.; Mullher, S.; Yurchark, R. GeoStat-Framework/PyKrige, version v1.5.1; Available online: https://github.com/GeoStat-
Framework/PyKrige (accessed on 8 January 2020). 

35. Pedregosa, F.; Varoquaux, G.; Granfort, A.; Michel, V.; Thirion, B. Scikit-Learn: Machine learning in python. J. Mach. Learn. Res. 
2011, 12, 2825–2830. https://doi.org/10.1007/s13398-014-0173-7.2. 

36. Huo, X.-N.; Li, H.; Sun, D.-F.; Zhou, L.-D.; Li, B.-G. Combining geostatistics with Moran’s i analysis for mapping soil heavy 
metals in Beijing, China. Int. J. Environ. Res. Public Health 2012, 9, 995–1017. https://doi.org/10.3390/ijerph9030995. 

37. Pereira, G.W.; Valente, D.S.M.; de Queiroz, D.M.; Santos, N.T.; Fernandes-Filho, E.I. Soil mapping for precision agriculture 
using support vector machines combined with inverse distance weighting. Precision Agriculture. 2022,. 
https://doi.org/10.1007/s11119-022-09880-9. 

38. Liu, Q.; Xie, W.J.; Xia, J.B. Using semivariogram and Moran’s i techniques to evaluate spatial distribution of soil micronutrients. 
Commun. Soil Sci. Plant Anal. 2013, 44, 1182–1192. https://doi.org/10.1080/00103624.2012.755999. 

39. Legendre, P.; Fortin, M.-J. Spatial pattern and ecological analysis. Vegetatio 1989, 80, 107–138. 
40. Lee, S. Developing a bivariate spatial association measure : An integration of Pearson’s r and Moran’s i. Geogr. Syst. 2001, 3, 369–

385. 
41. Rey, S.J.; Anselin, L. PySAL: A Python Library of Spatial Analytical Methods; Fischer, M., Getis, A., Eds; Springer: Berlin/Heidelberg, 

Germany, 2010. 
42. Celisse, A.; Robin, S. Nonparametric density estimation by exact leave-p-out cross-validation. Comput. Stat. Data Anal. 2008, 52, 

2350–2368. https://doi.org/10.1016/j.csda.2007.10.002. 
43. Cawley, G.C.; Talbot, N.L.C. Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers. Pattern Recognit. 

2003, 36, 2585–2592. https://doi.org/10.1016/S0031-3203(03)00136-5. 

 


	1. Introduction
	2. Materials and Methods
	2.1. Smart-Map Implementation
	2.2. Case Study for Smart-Map Plugin Evaluation
	2.3. Methods of Interpolation and Spatial Correlation Analysis
	2.4. Generation of Scenarios and Performance Criteria for Comparison between  Interpolation Methods
	2.5. Definition and Selection of Features for the SVM Model

	3. Results and Discussion
	3.1. Spatial Correlation and Selection of Covariates for the SVM Model
	3.2. Comparison between OK and SVM Methods
	3.3. Maps of Soil Attributes
	3.4. Limitations and Future Developments

	4. Conclusions
	References

