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Abstract 

Automation technology research in agriculture is proliferating throughout the globe. There are 

several trends that drive the application of automation technology in agriculture. Firstly, by the year 

2042, the world population is projected to increase to 9 billion souls. There will be a huge 

challenge in providing abundant high quality, affordable, safe and nutritious foods for such 

population, especially in light of the trend to use arable land for bio-fuel production. Secondly, the 

labor force in agriculture is declining and automation technology can be used to replace some 

traditional labor. For instance, in specialty crop production labor is often tedious, non-ergonomic 

and carried out by unskilled personnel. Automation technology can improve the productivity, 

health and job-satisfaction of personnel, but there are serious technical challenges in automating 

operations especially in horticulture and viticulture. Thirdly, the environmental impact of 

Agricultural production needs to be limited. For instance, today worldwide seven weed species 

have been identified as being resistant to glyphosate. The only truly sustainable solution for this 

problem is high-speed mechanical weed control which is under development. Although automation 

technology holds ample promise for the future, currently the overall performance of the machines is 

often insufficient to compete with traditional methods. The limited performance of the machinery is 

one of the reasons why to date few of the technologies developed have been commercialized. 

However, the role of automation technology will increase and its impact on agriculture as we know 

it will be profound. This paper describes agricultural automation research in areas that typically 

constitute automated systems, being 1) Sensing and perception, 2) Reasoning and Learning, 3) Data 

Communication and 4) Task planning and execution. A separate section is devoted to Robotics 
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applications within plant production, animal husbandry, controlled environment as well as field 

robotics. 

1. Introduction 

The development of agriculture in traditional hunter-gatherer societies started around 

10,000 years ago and has been crucial to the formation of human civilizations across the 

globe. Over the centuries agriculture has morphed into the modern large-scale bio-

industry it is today, producing goods through the growing of plants, animals and other 

organisms in close interaction with the environment. The major changes in agriculture 

have occurred through domestication of crops and animals, weed control techniques, 

water management, fertilizer/pesticide application, genetic engineering and the large-

scale mechanization that occurred in the middle 1990’s. Although the improved methods 

and techniques over time have resulted in a global system capable of feeding 6 billion 

souls, it has also caused major concerns regarding its impact on the environment. In 

addition, owing to the recent worldwide attention to energy security as well as climate 

change, agriculture is projected as the supplier of bio-energy from renewable sources, 

opening up a new realm of opportunity and responsibility. Some of the issues facing 

agricultural production today include (1) managing and utilizing resources in the 

production while ensuring a sustainable natural environment; (2) laborious operations 

under conditions not conducive to human productivity; (3) advancement of technologies 

in other industries that threaten to attract labor force away from agriculture; (4) an 

increased demand for higher product quality; (5) the necessity to modernize agriculture 

using technology; (6) the trend towards organic farming and (7) to employ human 

intelligence and machine power in a sustainable and economical manner. The application 

of automation technology plays a role in all these issues: It can contribute to 

sustainability by providing field information through sensing, and to offer optimization 

tools. Robots are being developed to replace manual labor in the harvesting of fruits and 

vegetables. Weeding robots can replace chemical herbicide application in organic 

farming. Automation technology inherently addresses the issue of a dwindling labor force. 

The current plant factories in Japan produce high quality vegetables, free of disease or 

insect damage and are run with little human intervention. It is evident that automation 

technology is a field that can offer significant benefits to producers and consumers in the 

near future. 

Before addressing the (potential) applications of automation in agriculture it is useful 

to state a definition: The term automation signifies the added quasi-anthropomorphic 

intelligence to mechanized processes and/or devices (Ting, 1997). The capabilities of 

intelligence-enabled machines include: (1) Sensing and perception– obtaining the 

awareness of surroundings; i.e., gathering, processing, and interpretation of information 

about situations, (2) Reasoning and learning – conducting logical deduction, 

mathematical analysis, heuristic inference, and experiential adaptation used to derive 

conclusions, make decisions, and issue instructions, (3) Communication – coordinating 

and delivering information among various entities (4) Task planning and execution – 
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effecting device operations for control activation and physical work. Commonly seen 

additional components are external sensing, transporting, and traveling devices (Kondo 

and Ting, 1998).  

This article provides a review of past and current research and development in 

automation technology for the bio-industry. 

2. Sensing and perceptions 

The aim of agricultural production managers is to optimize crop yield and 

consequently profit. Therefore, the crop needs to be protected against common biotic 

stresses such as diseases, insect infestations, and competition from weeds as well as a-

biotic factors such as nutrient and water stress. Precision crop nutrition management has 

been the traditional tool to achieve optimized yield and it requires accurate and reliable 

information about the soil and crop conditions.  

Important soil parameters that need to be measured are moisture level, nitrogen level, 

pH, compaction levels and organic matter content. Ehsani et al. (1999) developed a Near 

Infrared (NIR) based technique to measure the nitrogen content of the soil. To assess the 

depth and strength of a compaction layer Grift et al. (2005a) developed an acoustic 

method in a laboratory setting and Adamchuk et al. (2001) developed a strain gage based 

method to measure soil mechanical impedance. Electrical Conductivity (EC) has been 

used extensively as a proxy measurement for soil fertility which is related to organic 

matter (Fraisse et al., 2001; Mueller et al., 2003). EC sensors in combination with pH 

sensors are commercially available. 

In standing crops there is a need to measure and assess nutrition level, disease and 

pest infestations, bacterial/viral infections, overall plant health and the proliferation of 

weeds. Among these, weed proliferation monitoring is easiest: it can be based on 

morphological properties, such as shape, size and color using cameras. CCD (charge 

coupled device) cameras have been applied successfully for detecting weeds in soybean 

fields (Tian, 2002) and in cotton fields (Downey et al., 2003). In weed management, there 

are currently two schools of thought being weed detection, where the crop plants are 

detected and all other plants are considered weeds and weed identification. The latter is 

becoming increasingly important, since there are currently several weed species that have 

shown resistance to glyphosate, the main ingredient in ‘Roundup’, a popular herbicide in 

the United States. The most threatening resistant species is common waterhemp 

(Amaranthus rudis) and tall waterhemp (A. tuberculatus), collectively referred to as 

waterhemp. This species has shown resistance to protoporphyrinogen oxidase (PPO)-

inhibiting herbicides as well as ALS-inhibiting and triazine herbicides (Patzoldt et al. 

2005). This waterhemp biotype uses a unique mechanism of resistance to survive 

exposure to PPO herbicides (Patzoldt et al. 2006). For weed identification algorithms are 

used such as artificial neural networks (ANNs), (Burks et al., 2000) genetic algorithms 

(Tang et al., 2000) and wavelets (Tang et al., 2003). The emergence of weeds that exhibit 

resistance to herbicides will require the development of high-speed mechanical in-row 

weed control technology which is in development. On-board imaging systems have also 
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been used for plant counting to accurately estimate the corn population in an early growth 

stage (Shrestha and Steward, 2003).  

The use of multispectral-image-based perception methods has been studied 

extensively to assess the crop nutrition level based on crop canopy reflectance in multiple 

spectral bands (Kim et al., 2000; Sui et al., 2005). Remote sensing, which uses multi and 

hyper-spectral imagery originating from satellites (Yang et al., 2004); airplanes (Yao and 

Tian, 2004) or helicopters (Sugiura et al., 2002), has been used to assess crop nutrition 

stress. After comparing the Normalized Difference Vegetation Index (NDVI) calculated 

using both satellite- and aerial-based crop canopy images Han et al. (2002) found that 

both methods were highly correlated to ground truth data when crop conditions were 

relatively heterogeneous across a field. When the crop conditions were more uniform, the 

correlation decreased significantly. Though aerial and satellite imageries are useful for 

research, both require extra expense to farmers since up-to-date images must be 

purchased annually. Alternatively, on-board systems are in development that can provide 

the farmer with up-to-date imagery in time and space. Kim et al. (2000) and Noh et al. 

(2005) developed on-board systems for real-time detection of nitrogen concentrations in 

corn plants to enable variable-rate fertilization. Both systems were based on NDVI 

estimation in terms of light reflectance intensity on leaves in various spectral bands. 

Reum and Zhang (2007) describe an innovative approach enabling more sensitive 

detection of crop nutritional stress levels. They represented the reflectance of corn leaves 

images in terms of a one-dimensional intensity distribution pattern in specific signal 

bands, after which they applied a wavelet transform to map the resulting patterns to 

various crop nutritional stress levels. This method offers a more accurate crop nutrition 

level perception since it is capable of making such an assessment based on individual 

plant data. 

Crop diseases require early detection to prevent potential widespread crop losses. The 

difficulty in detecting infections at an early stage also results in excessive use of 

pesticides and increased production costs (Sasaki and Suzuki, 2003). Conventional 

detection of disease infection is based on visual inspection, which is often too late to 

prevent damage. With the increased application of optical sensing technologies in 

agriculture, researchers have attempted various approaches to detect crop diseases and 

viral infections at an early stage. One of such approaches is the measurement of radiation 

reflectance intensity from plant leaves over a wide spectrum. This method is based on the 

fact that many kinds of diseases and viral infections cause a change in optical reflectance 

properties of the leaf surface, often resulting in an increase of reflectance in the visible 

bands (West et al., 2003). Examples of disease and virus infections using this approach 

include detection of Puccinia striiformis in wheat (Bravo et al., 2003), the Botrytis fabae 

(Chocolate spot disease) fungus infection in field beans (Malthus and Madeira, 1993), 

and Late Blight in tomatoes (Wang et al., 2008). Other commonly used crop disease 

sensing technologies include fluorescence and thermal imaging, which can extend and 

improve the capability of various crop disease sensing techniques.  

Arguably the largest number of CCD based cameras is applied in the product quality 

inspection stage. In a recent citrus fruit grading system, 6 color cameras were applied to 

measure color, size, shape, and defects on the top, bottom, and 4 lateral sides of a fruit 
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(Njoroge, et al., 2002). Near infrared (NIR) inspection has been used to enhance the fruit 

market value because it can determine not only sugar and acid contents but also internal 

qualities such as rotten core, black heart, maturity, tannin, and cavity (Lu and Ariana, 

2002). In addition, X-ray imaging systems have been used to inspect internal structural 

defects such as rind-puffing and the granulation status of the juice sacs (Njoroge, et al., 

2002). Recently, X-ray sensors were also used for kiwi fruits, apples, pears, peaches, 

persimmon, potatoes, melons and other fruits (Tao et al., 1990; Miller and Delwiche, 

1991; Kondo, 2003). To measure the degree of gloss on whole eggplant fruit surfaces, 10 

cameras (6 color and 4 monochrome) were installed in a grading facility at Okayama, 

Japan (Kondo et al., 2007a).  

Proper lighting is an essential component of any machine vision system. Since bio-

products have varying optical characteristics in various spectra, many types of imaging 

techniques and devices have been developed, from the visible region to X-ray, UV, and 

infrared regions. The latest technologies use Terahertz (THz) imaging through the 

development of new light sources and detectors (Hu and Nuss, 1995; Kawase et al., 

2003). In addition, nuclear magnetic resonance (NMR) technology has been also applied 

to bio-products (Chen et al., 1989; Song and Litchfield, 1990; Wang et al., 1988). 

Whereas hyper-spectral images are effective for food quality and safety monitoring, 

fluorescent imaging can aid in the detection of defects in fruits, plants, and meats (Bodria 

et al.,2002; Kim et al., 2001; Kim et al, 2004; Kondo et al, 2007b). 

Another application of optical perception technology is the guidance of robotic 

equipment. In the early 1980s, a research team at Michigan State University, USA, 

studied the potential of acquiring tractor guidance information from field images by 

evaluating several image processing techniques (Gerrish and Stockman, 1985). Their 

effort led to the development of a vision-guided tractor capable of following straight crop 

rows with an accuracy of 6 to 12 cm (Gerrish et al., 1997). In the same period, a Texas 

A&M University, USA, research team investigated a novel approach of steering a tractor 

following both straight and curved row crops. It demonstrated through field tests that 

their algorithm could detect heading errors within 0.5° and offset errors of less than 5 cm 

(Reid and Searcy, 1986). In the late 1990s, a team of the University of Illinois, USA, 

developed a research program on path perception technologies for autonomous 

agricultural equipment. Some of the early achievements included the use of redundant 

navigation sensors by fusing machine vision sensing with GPS and inertial sensor data. 

The combination of sensors provided reliable navigation information for guiding 

agricultural equipment performing various field tasks at normal operation speeds. Vision-

based path perception was used to guide agricultural tractors performing field operations 

at speeds of up to 17 km/h on straight rows and up to 10 km/h on curved rows (Zhang et 

al., 1999; Will et al., 2000; Han et al., 2004. The sensor fusion-based path finder methods 

for guiding agricultural equipment all achieved a tracking accuracy of 2.5 cm at typical 

speeds (Han et al. 2003; Zhang and Qiu, 2004). To improve the accuracy of object 

localization within the perceived scene under quickly varying light conditions, the 

research team also successfully used stereovision for to guide tractors performing field 

operations (Rovira-Más et al., 2004; Kise et al., 2005a). Benson et al., (2003) 
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demonstrated a vision-based guidance system that uses the edge of the cut-uncut crop for 

guidance of a combine harvester at normal operating speeds.  

Some other advancements on robotic equipment navigation perception technology 

researches include the work reported by Subramanian et al. (2006) who used a monocular 

camera to observe citrus grove alleyways, and Nara and Takahashi (2006) who applied a 

vision system to detect obstacles. However, little has been reported on using vision-based 

navigation to guide agricultural vehicles traveling in an open field without structured 

crops as landmark references. The challenge in using visual sensor to navigate a vehicle 

traveling on an open terrain is to find and utilize landmark points from unknown and 

randomly present textures. In contrast there are examples of guiding robotic vehicles on 

planetary-like terrains (Gonzalez-Barbosa and Lacroix, 2002), on urban streets (Saeedi et 

al., 2006), and agricultural fields (Wang and Zhang, 2007). In most of these researches, 

stereo cameras were used to perceive the environment because of their ability to provide 

3D information. Furthermore, stereovision has important advantages for robotic 

equipment navigation in a natural environment, including moderate insensitivity to 

shadows and lighting changes and the capability to detect obstacles.  

To navigate autonomous vehicles in fields, in addition to optical sensors, laser range 

finders have been used. To navigate an autonomous vehicle between tree rows, Barawid 

et al., (2007) reported on the successful development of a laser range finder based 

guidance system, using the Hough transform to recognize the trees. Laser range finder 

technology was also used as a real-time collision avoidance sensor in agricultural fields 

(Kise et al., 2005b). Lee and Ehsani (2008) investigated the accuracy of two common 

laser range finder units. 

3. Reasoning and learning 

The Internet has made information sources readily available, but the question how to 

use information intelligently is still a major research interest. In order to enable 

intelligence empowered bio-production systems, capabilities are required for automated 

data processing, logical/mathematical/heuristic reasoning, and experiential learning. 

Commonly seen machine reasoning and learning processes are in the forms of computer 

models, expert systems, artificial neural networks and decision support systems (Fang et 

al., 1992; Humphreys et al., 1994; Chao and Ting, 2003; Fleisher et al., 2002). Systems 

informatics and analysis is the branch of science and engineering that develops tools to 

gather, store, retrieve, analyze, present, and interpret information to aid in the process of 

decision-making (Snow and Lovatt, 2008; Körner and Van Straten, 2008; Matthews et al., 

2008). A system is a set of interrelated components organized to achieve certain goals. 

The systems paradigm emphasizes the performance of a system as a whole through 

understanding all components in the system, as well as the interrelationships among the 

components (Lejars et al., 2008). The importance of the systems approach arises from the 

fact that (1) individually functioning components do not necessarily constitute a working 

system, (2) piece-wise knowledge about individual components does not automatically 

provide a complete understanding of the overall system, and (3) necessary yet missing 

components can be detected after observing/analyzing the system as a whole.  
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The challenges in the integration of scientific information are as follows: (1) Many 

scientists have been very successful within their well defined disciplinary boundaries and 

it is not clear to individual scientists, why active participation in the effort of information 

integration is of any value; (2) the concept of systems analysis has not received the 

attention it deserves in the agricultural research community and the mechanism of 

systems analysis is perceived as frightening; (3) the tools used for systems analysis are 

mostly not user-friendly and incapable of dealing with dynamically changing information 

bases in a real-time fashion; (4) the integration of information from traditionally 

unrelated fields, such as life science and engineering, is likely to encounter new 

challenges; (5) the assumptions of systems analysis and methods of handling uncertain 

and incomplete information are not transparent; (6) it is difficult to balance “analysis” 

and “action” (Ting et al., 2003). 

In order to successfully address the issues and solve the problems associated with 

agricultural production systems, core competencies of automation, culture, environment, 

and systems (i.e., the ACESys paradigm) are required. The culture (i.e., biosciences and 

biotechnologies) and environment set the governing conditions under which agricultural 

operations take place. Automation deals with information processing and task execution, 

and often plays the role of integrator for a functional system. Automation adds to 

machines the quasi-anthropomorphic capabilities of perception, reasoning & learning, 

communication, and task planning & execution. Systems analysis and integration is a 

methodology that starts with the definition of a system and its goals and leads to the 

conclusion regarding the system’s workability (i.e., technical feasibility and practicality), 

productivity, economic viability, reliability, and other performance indicators for decision 

support purposes. Computers, with their vast storage capacities for data and algorithms 

and high-speed information processing, have brought about ever increasing possibilities 

for effective automation, with high precision, for agricultural systems (Ting, 2000).  

The ACESys concept is very useful in determining the “abstraction” (in the forms of 

foundation classes representing objects of interest) and information flows for bio-

production systems. This systems abstraction technique may be applied to any bio-

production system. The resulting foundation classes may represent the system 

components in as much breadth and depth as needed. The major difference will be the 

“culture” classes and objects. For example, if a controlled environment plant production 

system is under study, objects and classes that describe plant biological characteristics 

and processes will need to be developed and incorporated in the appropriate automation 

and environment (Fleisher et al., 1999; Ting and Sase, 2000). 

4. Data communication 

Communication technology is an essential component of automation in agriculture 

since it provides information flows among intelligent machines and human interfaces 

(Zhang and Ehsani, 2007). The convergence of sensing, computing and communication 

technologies for agricultural applications can be termed an ‘agricultural infotronics 

systems’ (AIS), essentially a real-time network topology connecting all on-farm 

production data management systems (Zhang et al., 2000).  
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In-vehicle communication has been standardized in the Controller Area Network 

(CAN), a serial two-wire multi-node message broadcast system with a maximum 

signaling rate of 1 Mbit per second. CAN is now common on many types of agricultural 

machinery, and the data communication protocol used is ISOBUS, standardized in ISO 

11783. An overview of the Controller Area Network can be found in Etschberger (2001) 

and Benneweis (2005) provides an overview of the status of the ISO 11783 standard. 

Although there is great interest in inter-vehicle communication to optimize the 

performance of machines working in cooperative systems such as in large-scale 

harvesting operations, there is no communication standard available for this purpose. 

 Wireless data communication can be implemented using the common Local Area 

Network (LAN) such as WiFi (IEEE 802.11.b), or a Personal Area Network (PAN) such 

as BlueTooth (IEEE 802.15.1), a low-power, short-range wireless industry standard often 

used to connect sensors to Electronics Control Units (ECUs) within a short range (Zhang 

and Ehsani, 2007; Kim et al., 2006). A strong alternative to the short-range BlueTooth is 

Zigbee (IEEE 802.15.4) and Zigbee Pro, the latter having an outdoor range specification 

of 1500 m. Since Zigbee is a multi-node network the range can be extended indefinitely 

by using intermediate nodes and information relay nodes. Zigbee is currently used in 

viticulture for distributed data acquisition (Morais et al., 2008) as well as animal tracking 

(Nadimi et al., 2008). An overview of Zigbee wireless data communication technology is 

given in Hebel, (2007). Another class of wireless data communication devices is Radio 

Frequency Identification (RFID). These devices consist of small tags which are used for 

human, animal and product tracking applications (Sahin et al., 2002). A complete 

overview of wireless sensor applications in agriculture and food industry is given in 

Wang et al., (2006). 

5. Task planning and execution 

Task planning and execution are essential functions of a highly automated machine. 

For instance, an assembly robot with an arm and gripper needs to have enough 

intelligence to automatically synthesize a manipulation plan when presented with 

randomly oriented parts (Tung and Kak, 1996). In agricultural robot applications the 

planning and execution task are usually far more complicated than their counterparts in 

industrial robotics, since the objects to be handled are usually unstructured and presented 

in random locations such as in cucumber harvesting (Van Henten et al., 2003). Similarly, 

in field robotics, an autonomous weeding robot has a set of actions it can perform to 

move itself around a field such as ‘turn left’,’backup’, and ‘extend effector’. To perform 

an overall task such as weeding, the robot must follow a sequence of subtasks in a certain 

order. This order may be fixed or adaptive: In the latter case the order must be decided by 

an intelligent algorithm that takes into account the environment through sensors and plans 

tasks according to a certain optimization criterion. Jorgensen et al. (2008) showed 

planning algorithms written in a scripting language to guide a weeding robot in a realistic 

field. Greenhouse control is another area where task planning is needed to achieve goals 

such as a target harvest date (Albright, 1990). 
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6. Robotics 

Robotics in Agriculture is not a new phenomenon: In controlled environments it has a 

history of over 20 years. However, with the latest increase in computational power 

combined with a cost reduction, robotics applications are spreading. For convenience, we 

will categorize the applications in plant oriented robotics, animal robotics, controlled 

environment robotics (green houses) as well as field robotics.  

6.1. Plant production 

The study of agricultural robot application for plant production presumably started 

with a tomato harvesting robot (Kawamura et al., 1984). Currently there are automated 

harvesters in the research phase for cherry tomatoes (Kondo et al. 1996a), cucumber (Van 

Henten et al., 2002), mushrooms (Reed et al., 2001), cherry (Tanigaki et al., 2008) and 

other fruits (Kondo et al., 1996b). In horticulture, robots have been applied to harvest 

citrus (Hannan and Burks, 2004) and apples (Bulanon et al., 2001). So far, no harvesting 

robot has reached the stage of commercialization, because of their low operation speeds, 

low success rates, and high costs. A recent robot which is the closest to 

commercialization may be a strawberry harvesting robot (Kondo et al., 2005). The robot 

operates during night time and harvests fruits hung from the sides of a table top culture in 

approximately 20 second, yielding a harvest capacity of 0.3 ha greenhouse per night.  

In seedling production, there are many operations such as seeding, thinning, grafting, 

cutting sticking, transplanting, and others. Some of them are automated and robotized, 

while some robots have been commercialized with cell trays in the 1990s. A seedling 

transplanting system was developed (Ting et. al., 1990a) based on a 4 Degree Of 

Freedom (DOF) SCARA robot and a sliding-needle type end-effector (Ting et. al., 

1990b). Later Yanmar Co., Ltd., Japan started selling a four fingered robotic transplanter 

which transplants seedlings from a cell tray to pots using a Cartesian coordinate 

manipulator. Visser company, the Netherlands also produces a type of transplanting robot 

which uses machine vision and end-effectors to replace defective seedlings. The former 

and the latter robots have capacities of handling 6000 seedlings/h and 4500 seedlings/h 

respectively. 

The ‘cutting/sticking’ operation is often conducted for seedling propagation where 

individual leaves are cut from the mother plant, and placed inside a tray in which they 

grow to full plants. A chrysanthemum cutting/sticking robotic system consisting of 

machine vision and a manipulator was developed at Okayama University (Kondo and 

Monta, 1997). Based on the experimental results, a fully automatic model and a semi-

automatic model for commercialization were developed by Panasonic company and Iseki 

Co., Ltd. The fully automatic robot was capable of sticking a cutting in 5 to 6 seconds. 

Another type of cutting/sticking robot was developed for geranium at the University of 

Georgia, USA (Simonton and Pease, 1990). 

The grafting operation ensures higher quality production and disease resistance to 

seedlings. Although a semi-automatic grafting robot which could process 800 cucumber 

seedlings was commercialized by many companies 15 years ago (Kondo and Ting, 1998), 



46 T.  Grift et al. / Journal of Biomechatronics Engineering Vol. 1, No. 1, (2008) 37-54 

 

two operators were required to service the robot, and it is desirable to fully automate the 

operation. 

The ‘plant factory’ arguable constitutes the pinnacle of automation technology in 

plant production. It is a highly automated facility where vegetables and fruits can be 

produced with minimal human intervention in an environment free of disease, insects and 

the risk of mechanical damage. Mitsubishi Heavy Industry Company and Kyushu Electric 

Company (Mitsuhashi et al., 1994) attempted to build a fully automated plant factory 

which contained automatic machines and environments for seeding, germination, 

seedling nursery, transplanting, seedling spacing, harvesting and packaging. The 

production sequence was as follows: A seeding device places coated seeds into twelve 

holes of a urethane cube shaped by a cutting device. The seeded tray is then transported 

to a germination platform where it is irrigated at regular intervals. After germination, the 

seedling is transported to a nursery platform where it is grown under controlled artificial 

lighting in a hydroponic solution. When the seedling has matured sufficiently, a 

transplanting device picks up the urethane cube with the seedling and places it into a 

growing bar using four fingers. This growing bar method was adopted so that the space 

among the seedlings can be varied in relation to the growth stage of the seedlings. When 

the seedling has grown to full maturity, the growing bars are transported to the harvesting 

machine, which cuts the roots after which the plants are weighed and wrapped in a film.  

The capacity of the system is equivalent to four operators, because the devices in the 

system can work for a total of 33 person hours a day, where the system produces 1500 

vegetables per day. The breakdown of the 33 hours is 8% for seeding, 12% for 

transplanting, 27% for spacing, 30% for harvesting and wrapping, 11% for washing 

materials and equipment, 9% for shipping, and 3% for seedling nursery. 77% of the 33 

hours is automated, while the remaining 23% for the latter three items is conducted 

manually (Kondo and Ting, 1998). 

 

6.2. Animal husbandry 

 Milking is the most laborious task in dairy cattle husbandry. In The Netherlands, two 

types of robot milking systems are on the market (Kuipers, 1996). In both systems the 

robot is stationary the cows have to visit a milking box where they are milked and fed 

simultaneously. The attachment of teat cups in one system was based on teat locations 

stored a priori in a computer, combined with a vision system and the teat cups were 

attached simultaneously. The other system employed a robotic arm that was positioned 

below the udder and ultrasonic sensors were used to determine the locations of the teats. 

After these locations are determined, the teat cups are attached individually (Hogewerf et 

al., 1992). There are currently companies selling the milking robots in The Netherlands, 

Germany, Sweden, USA, and Japan. Developmental research on autonomous milking 

systems for stanchion barns has been conducted as well (Hachiya et al., 1996). In this 

system the animals remain stationary while the milking robot moves along a gantry 

system. 

To reduce the cost of wool harvesting, two types of wool shearing robot systems were 

developed at the University of Western Australia (Trevelyan, 1992) and at the Australian 

Wool Corporation (Australian Wool Corporation, 1988). Since sheep are easily damaged 
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animals, a fast response and high reliability of the robot are required to avoid damage to 

the sheep’s skin. In one robotic shearing system, the sheep were held on trolleys which 

were automatically moved to one of the shearing stations. The robot's computer was 

programmed with sheep morphology and at every shearing operation the morphological 

map was updated. The robot could shear 95% of a sheep in 24 minutes. The other robot 

system consisted of dual manipulators for higher working efficiency. Although the 

shearing time per sheep was reduced to 1.5 min which is 1/5 of a human operation, this 

robot only sheared the back of the sheep and the remaining areas were sheared manually. 

6.3. Controlled environment 

In controlled production environments automation technology already has a history of 

over 20 years. Citrus fruit grading systems (Njoroge et al., 2002) have been equipped 

with machine vision and NIR internal quality inspection technologies. Later, a fruit 

grading robot was developed by SI Seiko Co., Ltd. for peaches, pears, apples, and 

tomatoes (Kondo, 2003). This system consists of two 3 DOF Cartesian coordinate 

manipulators with 12 sets of suction cups, 12 cameras with 12 sets of lighting devices and 

can inspect three fruits per second. A packing robot to transport fruits from carriers on a 

line to a shipping container works in unison with the grading robot.  

6.4. Field robotics 

Field robotics to date has mainly focused on data collection for weed control. An 

overview of the activities in weed control is given in Slaughter et al. (2008). The 

development of robots for field crop production applications is still in its infancy and 

hence, few articles are available. Baerveldt and Astrand (1998) developed a rudimentary 

robot targeted for weed control. Bak and Jakobsen (2004) proposed a small field robot 

capable of traveling between crop rows to register the locations of crops and weeds using 

a camera and GPS receiver. Hofstee et al. (2004) developed a machine vision based 

algorithm for autonomous crop guidance. Grift et al., (2005b) developed two robots for 

field scouting applications. There are currently two agricultural Field Robotics student 

competitions, one in Europe (Van Straten, 2003) and another in the USA. 

7. Conclusions 

This paper gives a broad overview of automation technology applied in the bio-

industry. To speculate about the future impact of automation technology in the bio-

industry, it is worthwhile attempting to analyze the forces driving and inhibiting 

automation research and application.  

․ The increase in the price of food and commodities is driven by the replacement of 

arable farm land to produce bio-fuels instead of food. Worldwide there are outbreaks 

of riots in places where food is available, yet unaffordable. Although there is a 

definite need to replace the widespread use of fossil fuels with sustainable alternatives, 

it can not come at the price of poverty. The shortage of fossil fuels also has made 

fertilizer far more expensive, which is currently offset by the increased prices of 



48 T.  Grift et al. / Journal of Biomechatronics Engineering Vol. 1, No. 1, (2008) 37-54 

 

commodities. Automation technology can help in making food production more 

efficient by minimizing inputs and maximizing outputs.  

․ Organically, grown food is currently relying on abundant manual labor, especially in 

weeding since no chemical control is allowed. Here autonomous high-speed 

mechanical weeding alternatives need to be developed. One of the biggest challenges 

here is to achieve sufficient field capacity and limit energy usage. Multiple robot 

systems (termed swarms or flocks) may be the solution to this problem. 

․ The harvest of fruits, vegetables and other specialty crops is often carried out by 

seasonal labor under harsh conditions. By replacing this tedious labor with automated 

machines it is possible to eliminate these tasks and offer more rewarding jobs to 

current laborers. Although research in fruit harvesting has been attempted for decades, 

a commercial automated system has yet to become available. 

․ Since in many countries the available labor force in agriculture is decreasing, 

automation and robotics research can help keeping production up and costs down. A 

good example are milking robots which have shown to reduce labor requirements as 

well as offering a more animal friendly environment, since the cows can choose to be 

milked at will. The plant factories in Japan are other examples where labor can be 

dramatically reduced and a high quality product is delivered albeit at a high cost due 

to the housing, lighting and handling requirements.   

․ The current system of farming is not sustainable. A good example is the emergence of 

glyphosate resistant weeds. Even if a new chemical would be developed at 

astronomical costs, in a few decades inevitably new weeds will become resistant. The 

only long term solution is high-speed mechanical weed control which can be 

implemented using automation technology. 

․ Forces inhibiting the research in and commercialization of automation technologies 

are: 

․ There are major technical challenges in automation due to the uncontrolled outdoor 

environment in combination with the fact that agricultural products and materials are 

highly inconsistent in shape and size. Many attempts to replace human labor by 

robots carrying cameras to replace human eyes have shown notoriously slow.  

․ Collaboration among academic institutions and commercial entities has shown 

cumber some. Many universities in the USA now have research parks where 

companies work together with academic personnel. This type of collaboration is 

complicated mainly since the academic world has different objectives such as 

knowledge gathering and dissemination, whereas companies are interested in 

Intellectual Property and short development turnaround. Another discrepancy is that 

in companies time is limited, and budgets high, which is exactly opposite in 

academics research. 

․ Funding from government sources is limited, since the perception exists that major 

manufacturers will develop the technology, and the market mechanism will 

proliferate it. This is a misconception, since companies will only work on 

technologies that are applicable in the short term whereas the in-depth long term 

high-risk research takes place at universities. 
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․ There is the fear among farmers and the general public that automation will take away 

jobs, that it will remove the romantic aura of farming and that it will impact the 

recreational value of farm land.  

․ There are already many striking examples of the benefits that automation technology 

offers, and they have to be used to convince policymakers that more funds are needed 

to develop solutions to the problems facing the world today. 
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