Analysis of Centrifugal Pumps                           Click here for a discussion of Turbines.

 

 

In a Nut Shell:  External torque drives the impeller of a centrifugal pump resulting in a change

of angular momentum of the fluid across the impeller and is key to the analysis of centrifugal

pumps.

 

Centrifugal pumps produce rotary motion of an impeller pushing fluid across vanes.

Consequently cylindrical coordinates are handy in the analysis of fluid motion.

   

Recall        r  =  r  er + z k      where   r  is the position vector to a fluid particle

 

       Now     V   =   Vr er  +  Vt  et  + Vz  k    Note:  Vr  is the radial component of absolute velocity

 

where   V  is the absolute velocity of fluid particle in cylindrical components

 

Click here for a drawing of the impeller showing conditions at the entrance and exit for pumps.

 

 So the cross product is:         r x V  =   z Vt ) er  + ( z Vr ˗ r Vz ) et + ( r Vt ) k

For pumps and turbines the important term is the z-component since it relates to axial torque. 

 

        ˗  ∫ (r x V) ρ V . n dS  +  ∫ (r x V) ρ V . n dS  =  Σ T         (Use z-component of the

          cs in                          cs out                                                  angular momentum only.)

 

and from conservation of mass:          ρ V . n dS  =   ρ Q  =  ρ A1 Vr1  =  ρ A2 Vr2

Thus for steady, uniform flow the principle of angular impulse and angular momentum for

pumps simplifies to:     let 1 denote the entrance and 2 denote the exit on the vanes of the impeller

                                                   

 

                  ρ Q  [ r2 Vt2   ˗   r1 Vt1 ]      =     Tz

 

                   

where   ρ Q  is the mass flow rate crossing the control surface   (It will be the same

            entering and leaving the control surface.)            ρ Q   = dm/dt

 

            r2 Vt2     where  r2 is the radial distance on the vane at the exit and Vt2 is the tangential

                          component of the absolute fluid velocity of the fluid particle at the exit

            r1 Vt1     where  r1 is the radial distance on the vane at the entrance and Vt1 is the tangential

                          component of the absolute fluid velocity of the fluid particle at the entrance

                   Tz  is the net torque driving the pump                Click here to continue discussion.

 

 


Return to Notes on Fluid Mechanics


Copyright © 2019 Richard C. Coddington
All rights reserved.