Differential Analysis of Fluid Flow    (continued)

 

In a Nut Shell:  Fluid Kinematics (review)

 

General motion of a fluid element generally  includes  translation, rotation, linear deformation, and angular deformation.  The rotation vector, ω, in general, has three components.

 

                                           ω  =  ωx i  +  ωy j  +  ωz k   where

 

        ωz  =  ˝ ( ∂v/∂x - ∂u/∂y) ,       ωx  =  ˝ ( ∂w/∂y - ∂v/∂z) ,       ωy  =  ˝ ( ∂u/∂z - ∂w/∂x)

 

The rotation vector is important in that it leads to the definition of the vorticity vector,  ζ  .

 

                                 ζ   =  2  ω  =  Del x V       where  Del is the “del operator”

 

Note:  A special situation arises for two-dimensional fluid flow in the x-y plane when  

∂v/∂x   =   ∂u/∂y.  In that case  rotation around the z-axis is zero giving rise to the condition

of irrotational flow which simplifies the analysis of complex flow fields.

 

Special Case of Fluid motion in the xy-plane

 

For steady, incompressible, two-dimensional fluid motion in the xy-plane conservation of mass

reduces to

                                      ∂u/∂x + ∂v/∂y   =  0                                                               (1)

  

This equation is also called the continuity equation.

 

It proves useful to define a new function,  ψ(x,y)  , called the stream function such that   

 

                                u  =  ψ  /∂y   and    v  =  - ∂ ψ /∂x ,  then

 

conservation of mass (the continuity equation) is automatically satisfied.  To see this

result substitute  u and  v   into eq. (1).   Equation (1) is in Cartesian coordinates.  In

polar coordinates eq. (1) becomes:          ( Note here   ψ  =  ψ(r,θ)  )

 

                                vr  =  (1/r)∂ψ /∂θ   and    vθ  =  - ∂ ψ /∂r

 

Click here to continue this discussion.

 

Return to Notes on Fluid Mechanics


Copyright © 2019 Richard C. Coddington
All rights reserved.