Differential Analysis of Fluid Flow

 

 

Key Concept:  An alternative to examining fluid motion in a finite control volume is to"shrink"

the volume to a point and examine the conditions of fluid motion at any given point.  This

approach leads to differential equations in the "differential analysis" of fluid flow

 

 

In a Nutshell:    Imagine the control volume being shrunk to a point.  Then the differential

form for conservation of mass at any given point becomes:  (in Cartesian coordinates)

 

                            ∂ρ /∂t   +  ∂(ρu) /∂x  +  ∂(ρv) /∂y  +  ∂(ρw) /∂z   =  0       

 

where ρ is the fluid density,  u,v, and w  are the components of fluid velocity

 

Conservation of mass in cylindrical polar coordinates ( r, θ, z ):

 

                           ∂ρ /∂t   +  (1/r)∂(rρvr) /∂r  +  (1/r)(ρvθ) /∂θ  +  ∂(ρvz) /∂z   =  0       

                       

where ρ is the fluid density,  vr, vθ, vz  are the components of fluid velocity

 

Likewise, the differential form for conservation of linear momentum at any given point, assuming inviscid flow becomes:

 

               ρ [∂u /∂t   + u ∂u /∂x  + v ∂u/∂y  +  w ∂u /∂z]   =    ρ gx  -   ∂P/∂x      

 

               ρ [∂v /∂t   + u ∂v /∂x  + v ∂v/∂y  +  w ∂v /∂z]   =    ρ gy  -   ∂P/∂y      

 

               ρ [∂w /∂t  + u ∂w /∂x + v ∂w/∂y  + w ∂w /∂z]   =    ρ gz   -   ∂P/∂z

 

These equations go by the name, Euler’s equations of motion for an inviscid fluid.

Again for steady flow, the acceleration terms   ∂u /∂t ,  ∂u /∂t,  and  ∂u /∂t   are zero.

 

The acceleration terms  u ∂u /∂x , v ∂u/∂y, and  w ∂u /∂z  etc are “convective" acceleration

terms.  They are nonlinear and make solution difficult except for special cases.

 

The terms  ρ gx , ρ gy , ρ gz   result from gravitational forces on the fluid element.

The terms  ∂P/∂x ,  ∂P/∂x , and  ∂P/∂x  are pressure gradients acting on the fluid element.

 

Click here to continue this discussion.

Return to Notes on Fluid Mechanics


Copyright © 2019 Richard C. Coddington
All rights reserved.