Integrated forms of Euler’s Second Law                        

In a Nut Shell:  Euler’s second law deals with change in angular momentum of a rigid body.   One option is to use this law directly (as given below). Another option is to use integrated forms of this law.

 

 MC  =  dHC/dt

Euler’s Second Law

 

where     MC  is the sum of all external moments acting on the rigid body about its mass center

             dHC/dt  is the rate of change of the angular momentum of the rigid body about its

                          center of mass measured in an inertial frame of reference  dHC/ dt =  IC dω/dt

 

If the external moments are a function of time, then integration of Euler’s second law with respect

time yields the principle of angular impulse and momentum.   (See table below.) 

 

Start with    dHC/ dt =  IC dω/dt .   Then  MC dt   =  ICdω  and integration from time 1  to  time 2 gives

                                           

 

                       2                     2

                       ∫ MC(t) dt   =   IC dω  =  IC ω2  - IC ω1 

                      1                     1

 

           

    Angular Impulse  =  Change in Angular Momentum

 

 

Click here for an example of the principle of angular impulse and momentum.

 

If the moments are a function of angular position, then integration with respect to angular displacement yields the principle of work and energy for angular motion.  (See table below.)

 

Start with         MC =  IC dω/dt, take the dot product with the displacement,   k,  and then integrate

from position 1 to position 2.

 

     MC k   =  IC dω/dt k  =  IC [dω/dt/dt]dt k  =  IC [dω/dt ω]dt   =  IC dω ω   =  IC ω dω   

 

 

 

        2                   2                

        MC   =  ∫ IC ω dω     =  ½ ICω22    ½ IC ω12   =  T2    T1

       1                 1

 

           

    Work done by moments      =       Change in Kinetic Energy

 

 

Click here for an example of Work & Energy.

 


   Return to Notes on Dynamics


Copyright © 2019 Richard C. Coddington
All rights reserved.